The brain auditions different cells when learning a task, some don't make the cut

November 14, 2017, Cell Press
Schematic illustration of potential cellular changes underlying gray matter volume expansion and renormalization as detectable with MRI. Credit: Wenger et al./Trends in Cognitive Sciences 2017

For decades, neuroscientists have wondered how the brain can continue to learn new skills without needing to grow in size or volume over a person's lifetime. Evidence suggests that the number of brain cells - such as neurons and glial cells - does initially increase as we're learning, but many are eventually pruned away or assigned to other roles. Researchers in Germany and Sweden present this theory November 14 in the review journal Trends in Cognitive Sciences.

"Brain matter volume increases in the initial stages of learning, and then renormalizes partially or completely," says first author Elisabeth Wenger, a neuroscientist at the Max Planck Institute for Human Development in Berlin. "This seems to be an effective way for the brain to first explore the possibilities, call in different structures and cell types, select the best ones, and get rid of the ones that are no longer needed."

She describes as actors auditioning for a movie for which the brain is the director: The brain calls in the candidates by forming new , and this causes it to grow macroscopically in volume. The brain then tries out different functions for them—seeing which can store or carry the information best. Based on which cells function most efficiently, the brain dismisses the other candidates or assigns them to different roles.

As evidence, the researchers discuss a study in which right-handed people learned to write and draw with their left hands. After a month, their had increased, but three weeks later it was nearly back to normal. Researchers observed similar results in other studies in which monkeys learned to use a rake to retrieve food or rats learned to differentiate between sounds.

Wenger and her co-authors, including Claudio Brozzoli, Ulman Lindenberger, and Martin Lövdén, were surprised by how often the phenomenon of brain expansion and renormalization has been recorded already in animal studies, and predict it applies to human brains too. "We are definitely not the first to suggest or introduce the expansion-renormalization model," says Wenger. "I think we are just the ones who are now promoting it in the field of grey matter volume changes in humans."

The researchers believe that this theory should influence how researchers design neural studies. "In a way, it is now apparent that the typical design is just insufficient to show the full scope of changes that happen," Wenger says. "This theory calls for study designs with more measurement time points to properly display changes in volume."

Explore further: Why teen mental ability surges while brain shrinks

More information: Trends in Cognitive Sciences, Wenger et al.: "Expansion and Renormalization of Human Brain Structure During Skill Acquisition" , DOI: 10.1016/j.tics.2017.09.008

Related Stories

Why teen mental ability surges while brain shrinks

June 6, 2017
(HealthDay)—Scientists say they have an answer to a persistent and quirky puzzle about brain development.

Mediterranean diet may have lasting effects on brain health

January 4, 2017
A new study shows that older people who followed a Mediterranean diet retained more brain volume over a three-year period than those who did not follow the diet as closely. The study is published in the January 4, 2017, online ...

A different take on differences between men's and women's brains

June 28, 2017
There is greater variety in the size of men's brains than of women's. This could help explain why some psychiatric disorders such as ADHD and autism are more prevalent in boys. Leiden brain researcher Lara Wierenga has published ...

Chemoradiation for glioblastoma takes toll on brain

September 17, 2015
(HealthDay)—Radiation and chemotherapy can cause structural changes in the healthy brain tissue of patients with glioblastoma brain tumors, according to a study published in the Aug. 25 issue of Neurology.

Study finds gray matter density increases during adolescence

May 26, 2017
For years, the common narrative in human developmental neuroimaging has been that gray matter in the brain - the tissue found in regions of the brain responsible for muscle control, sensory perception such as seeing and hearing, ...

Recommended for you

New research into letter-spacing could help improve children's reading

March 19, 2018
Increased letter spacing helps individuals read faster, but not due to visual processing, according to new research from Binghamton University, State University of New York.

Paraplegic rats walk again after therapy, now we know why

March 19, 2018
With the help of robot-assisted rehabilitation and electrochemical spinal cord stimulation, rats with clinically relevant spinal cord injuries regained control of their otherwise paralyzed limbs. But how do brain commands ...

Kids with severe brain injuries may develop ADHD: study

March 19, 2018
(HealthDay)—Young children who sustain a severe head injury may struggle with attention problems as they grow older, researchers say.

Scientists locate nerve cells that enable fruit flies to escape danger

March 19, 2018
Columbia University researchers have identified the nerve cells that initiate a fly's escape response: that complex series of movements in which an animal senses, and quickly maneuvers away from, something harmful such as ...

Decision-making is shaped by individual differences in the functional brain connectome

March 19, 2018
Each day brings with it a host of decisions to be made, and each person approaches those decisions differently. A new study by University of Illinois researchers found that these individual differences are associated with ...

Decoding the chemistry of fear

March 19, 2018
Ask a dozen people about their greatest fears, and you'll likely get a dozen different responses. That, along with the complexity of the human brain, makes fear—and its close cousin, anxiety—difficult to study. For this ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.