Two classes of GGAA-microsatellites in a Ewing sarcoma context

November 1, 2017, Nationwide Children's Hospital

In a study published in PLOS ONE, researchers describe two types of GGAA-microsatellites and their roles in EWS/FLI binding and gene regulation in Ewing sarcoma. Ewing sarcoma is the second most common pediatric bone malignancy. It is initiated by chromosomal translocation t(11;22)(q24;q12), which creates the fusion protein and oncogenic driver EWS/FLI.

"The work to understand the subtleties of how the EWS/FLI and GGAA-microsatellites interact to drive oncogenesis is foundational to our ability to develop new therapeutics against transcription factor-driven cancers," says Stephen Lessnick, MD, PhD, director of the Center for Childhood Cancer and Blood Diseases at Nationwide Children's and senior author of the publication. "Here, we sought to define GGAA-microsatellites in a Ewing sarcoma context and understand their role across the genome."

In their work, Dr. Lessnick and his team used bioinformatics analysis of experimental data in an unbiased genome-wide approach. Then, they computationally linked bound microsatellites to adjacent EWS/FLI regulated . That data revealed two distinct types of GGAA-microsatellites: "promoter-like" (close-range) and "enhancer-like" (long-range).

According to the study, EWS/FLI binding and gene activation at promoter-like microsatellites is highly dependent on the length of GGAA motifs.

At long range, enhancer-like microsatellites demonstrate length-dependent EWS/FLI binding, but the researchers found minimal correlation for activation and none for repressed targets. Here, the number of GGAA-motifs positively correlates with EWS/FLI binding, but not with gene expression.

Further investigation into how EWS/FLI associates with GGAA-microsatellites to drive transcription was the subject of a recent study published in Proceedings of the National Academy of Sciences. Both studies highlight the importance of microsatellite length in oncogenic function.

"Microsatellite length and location appears to be essential for EWS/FLI to activate the oncogenic gene targets," says Dr. Lessnick. "Our results have revealed and characterized two classes of GGAA-microsatellites that suggest unique interactions and distinct regulatory mechanisms for distance-dependent activation and repressions. This characterization contributes insight into EWS/FLI transcription factor biology and clarifies the role of GGAA-microsatellites on a global genomic scale."

Explore further: A new paradigm for treating transcription factor-driven cancers

More information: PLOS ONE (2017). DOI: 10.1371/journal.pone.0186275

Related Stories

A new paradigm for treating transcription factor-driven cancers

September 18, 2017
In the current issue of Proceedings of the National Academy of Sciences, researchers from Nationwide Children's Hospital describe a new paradigm for treating transcription factor-driven cancers. The study focuses on Ewing ...

A noncoding RNA promotes pediatric bone cancer

November 17, 2014
Ewing sarcoma is a cancer of bone or its surrounding soft tissue that primarily affects children and young adults. A hallmark of Ewing sarcoma is a translocation event that results in the fusion of an RNA binding protein, ...

DNA structures called microsatellites play a greater role in cancer than previously thought

October 4, 2016
Short, unstable stretches of DNA, called microsatellites, may play a far greater role in the development and progression of cancer than previously thought, UW Medicine researchers report in a study appearing Oct. 3 in the ...

Single genetic abnormality accelerates, removes the brakes on Ewing sarcoma tumor growth

December 16, 2014
The genetic abnormality that drives the bone cancer Ewing sarcoma operates through two distinct processes - both activating genes that stimulate tumor growth and suppressing those that should keep cancer from developing. ...

Recommended for you

From the ashes of a failed pain drug, a new therapeutic path emerges

November 16, 2018
In 2013, renowned Boston Children's Hospital pain researcher Clifford Woolf, MB, BCh, Ph.D., and chemist Kai Johnsson, Ph.D., his fellow co-founder at Quartet Medicine, believed they held the key to non-narcotic pain relief. ...

Repurposing FDA-approved drugs can help fight back breast cancer

November 16, 2018
Screening Food and Drug Administration (FDA)-approved compounds for their ability to stop cancer growth in the lab led to the finding that the drug flunarizine can slow down the growth of triple-negative breast cancer in ...

Traditional chemotherapy superior to new alternative for oropharyngeal cancers

November 16, 2018
A drug increasingly used in combination with radiotherapy to treat a type of cancer that forms in the tonsils or the base of the tongue is inferior to a previously favored option, according to a large, clinical trial led ...

New 'SLICE' tool can massively expand immune system's cancer-fighting repertoire

November 15, 2018
Immunotherapy can cure some cancers that until fairly recently were considered fatal. In addition to developing drugs that boost the immune system's cancer-fighting abilities, scientists are becoming expert at manipulating ...

Anti-malaria drugs have shown promise in treating cancer, and now researchers know why

November 15, 2018
Anti-malaria drugs known as chloroquines have been repurposed to treat cancer for decades, but until now no one knew exactly what the chloroquines were targeting when they attack a tumor. Now, researchers from the Abramson ...

Standard chemotherapy treatment for HPV-positive throat cancer remains the most effective, study finds

November 15, 2018
A new study funded by Cancer Research UK and led by the University of Birmingham has found that the standard chemotherapy used to treat a specific type of throat cancer remains the most effective.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.