Two classes of GGAA-microsatellites in a Ewing sarcoma context

November 1, 2017, Nationwide Children's Hospital

In a study published in PLOS ONE, researchers describe two types of GGAA-microsatellites and their roles in EWS/FLI binding and gene regulation in Ewing sarcoma. Ewing sarcoma is the second most common pediatric bone malignancy. It is initiated by chromosomal translocation t(11;22)(q24;q12), which creates the fusion protein and oncogenic driver EWS/FLI.

"The work to understand the subtleties of how the EWS/FLI and GGAA-microsatellites interact to drive oncogenesis is foundational to our ability to develop new therapeutics against transcription factor-driven cancers," says Stephen Lessnick, MD, PhD, director of the Center for Childhood Cancer and Blood Diseases at Nationwide Children's and senior author of the publication. "Here, we sought to define GGAA-microsatellites in a Ewing sarcoma context and understand their role across the genome."

In their work, Dr. Lessnick and his team used bioinformatics analysis of experimental data in an unbiased genome-wide approach. Then, they computationally linked bound microsatellites to adjacent EWS/FLI regulated . That data revealed two distinct types of GGAA-microsatellites: "promoter-like" (close-range) and "enhancer-like" (long-range).

According to the study, EWS/FLI binding and gene activation at promoter-like microsatellites is highly dependent on the length of GGAA motifs.

At long range, enhancer-like microsatellites demonstrate length-dependent EWS/FLI binding, but the researchers found minimal correlation for activation and none for repressed targets. Here, the number of GGAA-motifs positively correlates with EWS/FLI binding, but not with gene expression.

Further investigation into how EWS/FLI associates with GGAA-microsatellites to drive transcription was the subject of a recent study published in Proceedings of the National Academy of Sciences. Both studies highlight the importance of microsatellite length in oncogenic function.

"Microsatellite length and location appears to be essential for EWS/FLI to activate the oncogenic gene targets," says Dr. Lessnick. "Our results have revealed and characterized two classes of GGAA-microsatellites that suggest unique interactions and distinct regulatory mechanisms for distance-dependent activation and repressions. This characterization contributes insight into EWS/FLI transcription factor biology and clarifies the role of GGAA-microsatellites on a global genomic scale."

Explore further: A new paradigm for treating transcription factor-driven cancers

More information: PLOS ONE (2017). DOI: 10.1371/journal.pone.0186275

Related Stories

A new paradigm for treating transcription factor-driven cancers

September 18, 2017
In the current issue of Proceedings of the National Academy of Sciences, researchers from Nationwide Children's Hospital describe a new paradigm for treating transcription factor-driven cancers. The study focuses on Ewing ...

A noncoding RNA promotes pediatric bone cancer

November 17, 2014
Ewing sarcoma is a cancer of bone or its surrounding soft tissue that primarily affects children and young adults. A hallmark of Ewing sarcoma is a translocation event that results in the fusion of an RNA binding protein, ...

DNA structures called microsatellites play a greater role in cancer than previously thought

October 4, 2016
Short, unstable stretches of DNA, called microsatellites, may play a far greater role in the development and progression of cancer than previously thought, UW Medicine researchers report in a study appearing Oct. 3 in the ...

Single genetic abnormality accelerates, removes the brakes on Ewing sarcoma tumor growth

December 16, 2014
The genetic abnormality that drives the bone cancer Ewing sarcoma operates through two distinct processes - both activating genes that stimulate tumor growth and suppressing those that should keep cancer from developing. ...

Recommended for you

Fusion hybrids: A newly discovered population of tumor cells

September 24, 2018
In a recent study published in Science Advances, Charles E. Gast and co-workers detail the spontaneous process of cancer cell fusion with white blood cells to produce heterogenous hybrid clones in multiple biological systems, ...

Cancer cells evade immunotherapy by hiding telltale marker, suggesting how to stop relapse

September 24, 2018
Harnessing the immune system to treat cancer shows great promise in some patients, but for many, the response does not last long-term. In an effort to find out why, Fred Hutchinson Cancer Research Center scientists are using ...

In zebrafish, a way to find new cancer therapies, targeting tumor modulators

September 21, 2018
The lab of Leonard Zon, MD, at Boston Children's Hospital has long been interested in making blood stem cells in quantity for therapeutic purposes. Looking for a way to test for their presence in zebrafish, their go-to research ...

What can salad dressing tell us about cancer? Think oil and vinegar

September 20, 2018
Researchers led by St. Jude Children's Research Hospital scientists have identified another way the process that causes oil to form droplets in water may contribute to solid tumors, such as prostate and breast cancer. The ...

Novel biomarker found in ovarian cancer patients can predict response to therapy

September 20, 2018
Despite months of aggressive treatment involving surgery and chemotherapy, about 85 percent of women with high-grade wide-spread ovarian cancer will have a recurrence of their disease. This leads to further treatment, but ...

Testing fluorescent tracers used to help surgeons determine edges of breast cancer tumors

September 20, 2018
A team of researchers with members from institutions in The Netherlands and China has conducted a test of fluorescent tracers meant to aid surgeons performing tumor removal in breast cancer patients. In their paper published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.