Two classes of GGAA-microsatellites in a Ewing sarcoma context

November 1, 2017, Nationwide Children's Hospital

In a study published in PLOS ONE, researchers describe two types of GGAA-microsatellites and their roles in EWS/FLI binding and gene regulation in Ewing sarcoma. Ewing sarcoma is the second most common pediatric bone malignancy. It is initiated by chromosomal translocation t(11;22)(q24;q12), which creates the fusion protein and oncogenic driver EWS/FLI.

"The work to understand the subtleties of how the EWS/FLI and GGAA-microsatellites interact to drive oncogenesis is foundational to our ability to develop new therapeutics against transcription factor-driven cancers," says Stephen Lessnick, MD, PhD, director of the Center for Childhood Cancer and Blood Diseases at Nationwide Children's and senior author of the publication. "Here, we sought to define GGAA-microsatellites in a Ewing sarcoma context and understand their role across the genome."

In their work, Dr. Lessnick and his team used bioinformatics analysis of experimental data in an unbiased genome-wide approach. Then, they computationally linked bound microsatellites to adjacent EWS/FLI regulated . That data revealed two distinct types of GGAA-microsatellites: "promoter-like" (close-range) and "enhancer-like" (long-range).

According to the study, EWS/FLI binding and gene activation at promoter-like microsatellites is highly dependent on the length of GGAA motifs.

At long range, enhancer-like microsatellites demonstrate length-dependent EWS/FLI binding, but the researchers found minimal correlation for activation and none for repressed targets. Here, the number of GGAA-motifs positively correlates with EWS/FLI binding, but not with gene expression.

Further investigation into how EWS/FLI associates with GGAA-microsatellites to drive transcription was the subject of a recent study published in Proceedings of the National Academy of Sciences. Both studies highlight the importance of microsatellite length in oncogenic function.

"Microsatellite length and location appears to be essential for EWS/FLI to activate the oncogenic gene targets," says Dr. Lessnick. "Our results have revealed and characterized two classes of GGAA-microsatellites that suggest unique interactions and distinct regulatory mechanisms for distance-dependent activation and repressions. This characterization contributes insight into EWS/FLI transcription factor biology and clarifies the role of GGAA-microsatellites on a global genomic scale."

Explore further: A new paradigm for treating transcription factor-driven cancers

More information: PLOS ONE (2017). DOI: 10.1371/journal.pone.0186275

Related Stories

A new paradigm for treating transcription factor-driven cancers

September 18, 2017
In the current issue of Proceedings of the National Academy of Sciences, researchers from Nationwide Children's Hospital describe a new paradigm for treating transcription factor-driven cancers. The study focuses on Ewing ...

A noncoding RNA promotes pediatric bone cancer

November 17, 2014
Ewing sarcoma is a cancer of bone or its surrounding soft tissue that primarily affects children and young adults. A hallmark of Ewing sarcoma is a translocation event that results in the fusion of an RNA binding protein, ...

DNA structures called microsatellites play a greater role in cancer than previously thought

October 4, 2016
Short, unstable stretches of DNA, called microsatellites, may play a far greater role in the development and progression of cancer than previously thought, UW Medicine researchers report in a study appearing Oct. 3 in the ...

Single genetic abnormality accelerates, removes the brakes on Ewing sarcoma tumor growth

December 16, 2014
The genetic abnormality that drives the bone cancer Ewing sarcoma operates through two distinct processes - both activating genes that stimulate tumor growth and suppressing those that should keep cancer from developing. ...

Recommended for you

New therapeutic gel shows promise against cancerous tumors

February 21, 2018
Scientists at the UNC School of Medicine and NC State have created an injectable gel-like scaffold that can hold combination chemo-immunotherapeutic drugs and deliver them locally to tumors in a sequential manner. The results ...

Kinase inhibitor larotrectinib shows durable anti-tumor abilities

February 21, 2018
Three simultaneous safety and efficacy studies of the drug larotrectinib reported an overall response rate of 75 percent for patients ages four months to 76 years with 17 different cancer diagnoses. All patients had tumors ...

Five novel genetic changes linked to pancreatic cancer risk

February 21, 2018
In what is believed to be the largest pancreatic cancer genome-wide association study to date, researchers at the Johns Hopkins Kimmel Cancer Center and the National Cancer Institute, and collaborators from over 80 other ...

Similarities found in cancer initiation in kidney, liver, stomach, pancreas

February 21, 2018
Recent research at Washington University School of Medicine in St. Louis demonstrated that mature cells in the stomach sometimes revert back to behaving like rapidly dividing stem cells. Now, the researchers have found that ...

Research could change how doctors treat leukemia and other cancers fed by fat

February 21, 2018
Obesity and cancer risk have a mysterious relationship, with obesity increasing the risk for 13 types of cancer. For some cancers—including pediatric cancers—obesity affects survival rates, which are lower for people ...

New technique predicts gene resistance to cancer treatments

February 21, 2018
Yale School of Public Health researchers have developed a new method to predict likely resistance paths to cancer therapeutics, and a methodology to apply it to one of the most frequent cancer-causing genes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.