Research points to diagnostic test for top cause of liver transplant in kids

November 22, 2017, Cincinnati Children's Hospital Medical Center
A section of obstructed extrahepatic bile duct in a neonatal mice. It exhibits residual expression of the enzyme called MMP-7 (shown in brown). Researchers report Nov. 22 in Science Translational Medicine that MMP-7 is a strong biomarker candidate for earlier diagnosis of biliary atresia, the most common cause of liver transplants for children in the United States. This could lead to earlier lifesaving treatments and possibly avoid more invasive procedures like liver transplant. Credit: Cincinnati Children's

Biliary atresia is the most common cause of liver transplants for children in the United States. Now researchers report in Science Translational Medicine finding a strong biomarker candidate that could be used for earlier diagnosis and lifesaving treatments, possibly avoiding more invasive procedures like liver transplant.

A research team led by Cincinnati Children's Hospital Medical Center identified molecular markers of the disease in blood samples that accurately diagnosed the condition with greater than 90% sensitivity and specificity in infants, according to Jorge Bezerra, MD, lead investigator and director of Gastroenterology, Hepatology and Nutrition.

"From a broad screen of over 1,000 proteins, we found a unique protein associated with . Testing this protein as a diagnostic biomarker in two additional groups of babies to validate accuracy, it passed with flying colors," he said. "These findings have real implications for the diagnosis and care of these babies."

Biliary atresia is a rare disease of the liver and bile ducts that occurs in infants. Liver cells produce a liquid called bile, which helps digest fat and carries waste products from the liver to the intestines. When a baby has biliary atresia, this flow is blocked. Bile becomes trapped inside the liver, quickly causing liver damage and eventually liver failure.

Images of inflammatory cells infiltrating the bile duct of an animal model of the liver disorder biliary atresia. Credit: C. Lertudomphonwanit et al., Science Translational Medicine (2017)

Early diagnosis and prompt surgical intervention are the best predictors of treatment success, according to study authors. But current diagnostic methods are time-consuming and imprecise. Part of the challenge is biliary atresia has several potential causes, such as viruses, environmental toxins and a dysregulated immune system.

This makes identification of faster, more effective and less invasive diagnostic methods challenging. But it also makes finding better diagnostics a high priority to allow earlier medical intervention, according to Bezerra and his colleagues, including first author Chatmanee Lertudomphonwanit, MD, of Cincinnati Children's and Ramathibodi Hospital (Mahidol University) in Bangkok, Thailand.

Blood Proteomics

To look for molecules involved in the biliary atresia disease process, researchers analyzed the blood of 70 biliary atresia patients to identify proteins that are significantly elevated when the disease is progressing. To do this, they performed a large-scale proteomics analysis-essentially a search among over 1,000 proteins and their levels found in patients' blood. The lead biomarker they identified is matrix metalloproteinase-7 (MMP-7), an enzyme that breaks down tissues and is implicated in several disease processes.

Images of blocked bile ducts due to the liver disease biliary atresia. Credit: C. Lertudomphonwanit et al., Science Translational Medicine (2017)

When researchers tested the diagnostic effectiveness of MMP-7 on its own, it had 97% sensitivity and 91% specificity for biliary atresia. Combining the use of MMP-7 with another blood test that is currently available, gamma-glutamil transpeptidase (GGT) further increased the diagnostic accuracy and decreased the risk of misdiagnose prior to the .

The authors also performed what the researchers call proof-of-principal tests to investigate the role of MMP-7 in the onset of biliary injury in mouse models of the disease. The experiments showed that MMP-7 is released during bile duct injury to promote obstruction and subsequent problems.

To further demonstrate whether MMP-7 damages bile duct tissues, the researchers used a pharmacologic inhibitor of the protein called Batimastat, which is approved only for laboratory research. This inhibition suppressed the onset of biliary atresia and decreased tissue injury in mouse models.

Next Steps

Future areas of studies will include validation in additional population and the development of an assay that allows MMP-7 to be quantified and used in the clinic as a readily available test for . Bezerra will also design strategies to measure MMP-7 as a monitor of disease worsening toward cirrhosis. He said it will be "intriguing" to determine whether Batimastat's success in suppressing the in mice points to future treatments to target pathways linked to the enzyme.

Explore further: Simple blood test developed to screen for life-threatening liver disease

More information: C. Lertudomphonwanit el al., "Large-scale proteomics identifies MMP-7 as a sentinel of epithelial injury and of biliary atresia," Science Translational Medicine (2017). … scitranslmed.aan8462

Related Stories

Simple blood test developed to screen for life-threatening liver disease

August 11, 2016
Doctors at Baylor College of Medicine and Texas Children's Hospital have found a way to detect biliary atresia and other neonatal liver diseases in newborns using a simple blood test. This means that infants with biliary ...

Possible treatment target found for main cause of severe liver disease in kids

November 8, 2011
Unexpected discovery of a new molecular signature for a destructive and often lethal pediatric liver disease may lead to a new therapeutic target for the hard-to-treat condition.

Scientists discover how the liver unclogs itself

June 30, 2017
A multi-disciplinary team of researchers from the Mechanobiology Institute, Singapore (MBI) at the National University of Singapore (NUS), the Institute of Bioengineering and Nanotechnology (IBN) of A*STAR, and BioSyM, Singapore-MIT ...

Artificial bile ducts grown in lab, transplanted into mice could help treat liver disease

July 3, 2017
Cambridge scientists have developed a new method for growing and transplanting artificial bile ducts that could in future be used to help treat liver disease in children, reducing the need for liver transplantation.

Recommended for you

A multimodal intervention to reduce one of the most common healthcare-acquired infections

March 16, 2018
Surgical site infections are the most frequent health care-associated infections in developing countries. According to the World Health Organization (WHO), this type of infection can affect up to one-third of surgical patients ...

After infection, herpes lurks in nerve cells, ready to strike—New research reveals what enables the virus to do so

March 15, 2018
Once herpes simplex infects a person, the virus goes into hiding inside nerve cells, hibernating there for life, periodically waking up from its sleep to reignite infection, causing cold sores or genital lesions to recur.

New imaging approach offers unprecedented views of staph infection

March 14, 2018
Eric Skaar, PhD, MPH, marvels at the images on his computer screen—3-D molecular-level views of infection in a mouse. "I'm pretty convinced that these are the most advanced images in infection biology," said Skaar, Ernest ...

Parasitic worms need their intestinal microflora too

March 14, 2018
Scientists at The University of Manchester have cast new light on a little understood group of worm infections, which collectively afflicts 1 in 4 people, mainly children—in the developing the world.

Compound scores key win in battle against antibiotic resistance

March 14, 2018
Researchers at Oregon State University have made a key advance in the fight against drug resistance, crafting a compound that genetically neutralizes a widespread bacterial pathogen's ability to thwart antibiotics.

Helicobacter creates immune system blind spot

March 13, 2018
The gastric bacterium H. pylori colonizes the stomachs of around half the human population and can lead to the development of gastric cancer. It is usually acquired in childhood and persists life-long, despite a strong inflammatory ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.