Elucidation of bone regeneration mechanism

November 3, 2017, Tokyo Institute of Technology
Elucidation of bone regeneration mechanism
Visualized OPCs in niches using transgenic zebrafish. Credit: Atsushi Kawakami, Tokyo Institute of Technology

How osteoblasts are supplied during bone regeneration has been controversial among bone researchers. According to Atsushi Kawakami, an Associate Professor who specializes in tissue regeneration and led the study, scientists disagree on how these cells are made.

The new study uses genetically engineered to show that a population of marked by high expression of matrix metalloproteinase 9, an enzyme that catabolizes collagens, provides osteoblasts during regeneration (Figure 1; Figure 2). Kazunori Ando, a graduate student who conducted the experiments, calls these cells progenitor cells (OPCs). Consistently, eliminating OPCs prior to tissue injury significantly impaired bone regeneration. Overall, the study shows that OPCs are essential for bone regeneration.

The researchers further investigated the developmental origin of OPCs and found that OPCs are derived from embryonic somites and reserved in niches of bone-forming tissues in adult animal as the source of osteoblasts. Embryonic somites produce osteoblasts during vertebrate development, but its relationship to adult osteoblasts was not known. The study revealed that OPCs derived from the somites are the dormant cells for later production of osteoblasts in adult animal.

OPC in the niche of fin joint. Credit: Atsushi Kawakami, Tokyo Institute of Technology

In conclusion, the findings suggest that a lineage of bone-producing cell, which are specified in embryonic somites, are maintained throughout the animal lives as progenitor cells for bone regeneration and also for bone maintenance (Figure 3).

"We use animal models because they show us a number of essential cellular and molecular mechanisms behind our existence. Considering the higher bone regeneration potential in zebrafish, OPCs will be a potential target for enhancing in mammals" said Kawakami.

Summary of the study. Credit: Atsushi Kawakami, Tokyo Institute of Technolgoy

Explore further: Researchers describe mechanism that underlies age-associated bone loss

More information: Kazunori Ando et al, Osteoblast Production by Reserved Progenitor Cells in Zebrafish Bone Regeneration and Maintenance, Developmental Cell (2017). DOI: 10.1016/j.devcel.2017.10.015

Related Stories

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

A closer look at osteoporosis medication's mechanisms may improve outcomes

July 31, 2017
Osteoporosis is the primary cause of bone fractures in the elderly. Bone loss in this disease reflects an imbalance between the activity of bone-degrading cells called osteoclasts and bone-building cells called osteoblasts. ...

Study shows how atherosclerosis and osteoporosis are linked

May 6, 2016
Patients with atherosclerosis—the buildup of cholesterol and fat in arteries—are at a higher risk of osteoporosis. A new study published in the American Journal of Physiology—Endocrinology and Metabolism shows how the ...

Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells

October 23, 2017
Spinal cord injuries result from a blunt or penetrating trauma. This is generally caused by accidents that occur during sport activities or when driving. Injuries of the spinal cord can lead to extreme pain (e.g. pressure ...

Research uncovers new protein to treat damaged bones

January 10, 2013
Korean researchers believe that the 'DJ-1 protein' can be used to promote the formation of new bone tissue in patients suffering from osteoporosis by improving communication between bone making cells (osteoblasts) and blood ...

Restoring what's lost: Uncovering how liver tissue regenerates

March 12, 2012
The liver is unique among mammalian organs in its ability to regenerate after significant tissue damage or even partial surgical removal.

Recommended for you

Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018
A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System ...

New study finds that fat consumption is the only cause of weight gain

July 13, 2018
Scientists from the University of Aberdeen and the Chinese Academy of Sciences have undertaken the largest study of its kind looking at what components of diet—fat, carbohydrates or protein—caused mice to gain weight.

Basic research in fruit flies leads to potential drug for diseases afflicting millions

July 13, 2018
River blindness and elephantiasis are debilitating diseases caused by parasitic worms that infect as many as 150 million people worldwide. They are among the "neglected tropical diseases" for which better treatments are desperately ...

Light based cochlear implant restores hearing in gerbils

July 12, 2018
A team of researchers with members from a variety of institutions across Germany has developed a new type of cochlear implant—one based on light. In their paper published in the journal Science Translational Medicine, the ...

Researchers discover gene that controls bone-to-fat ratio in bone marrow

July 12, 2018
In an unexpected discovery, UCLA researchers have found that a gene previously known to control human metabolism also controls the equilibrium of bone and fat in bone marrow as well as how an adult stem cell expresses its ...

Intensive care patients' muscles unable to use fats for energy

July 12, 2018
The muscles of people in intensive care are less able to use fats for energy, contributing to extensive loss of muscle mass, finds a new study co-led by UCL, King's College London and Guy's and St Thomas' NHS Foundation Trust.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.