Imaging may provide a new tool to track progression of calcific aortic-valve disease

November 7, 2017 by Taylor Mcneil, Tufts University
A 3D projection from a calcific nodule grown in a cell culture model of valve disease. “We saw that calcification occurs with varying rates and degrees, sometimes disappearing in spots even as the overall calcification increases,” said Lauren Baugh. Credit: Tufts University

Almost a half million Americans aged 65 to 74 suffer from a degenerative cardiovascular disease caused by calcium being deposited in heart tissue, and many will need valve replacement surgery to prevent heart failure. Currently there is no good way to measure the progression of the disease—called calcific aortic-valve disease, or CAVD—and the exact mechanism by which the disease progresses isn't well understood.

Now researchers at Tufts have developed a way to image the early stages of the disease, allowing them to track how the calcium is deposited and grows in the aortic valve tissue in much greater detail than before. The end result, they said, could be better understanding of CAVD and other diseases, such as breast cancer, and the development of more effective treatments. The research was a collaborative effort between the labs of professors Lauren D. Black III and Irene Georgakoudi, both in the Department of Biomedical Engineering, and was published on November 6 in Nature Biomedical Engineering.

Called two-photon excited fluorescence imaging, or TPEF, the imaging technology uses near-infrared light to create the , and, unlike some methods, does not destroy the tissue in the process.

"Our results indicate that TPEF imaging may provide a new tool to non-destructively quantify mineralization [of the heart valve] with high sensitivity and spatial resolution during CAVD progression," the researchers wrote.

In CAVD, which primarily affects older people and some younger patients who have a genetic defect, "the soft valve tissue stiffens to the point of hindering normal opening and closing of the valve," said Lauren Baugh, a doctoral student in Black's lab and first author of the paper. In some cases, Baugh added, "the tissue develops bone-like nodules, further impeding blood flow."

As the researchers started using TPEF imaging, they discovered that by focusing on one particular part of the signal generated, they were able to isolate the calcification process, and could track development of the bone-like nodules. "We saw that calcification occurs with varying rates and degrees, sometimes disappearing in spots even as the overall calcification increases," said Baugh.

For their testing, the researchers used samples from human CAVD patients, animal bone fragments, and calcified nodules that were grown in the lab.

TPEF provides much higher resolution than current imaging technologies used in diagnosing CAVD, such as traditional computer tomography (CT) scans, ultrasound, and magnetic resonance imaging. It "bears great promise as a tool that may be used to detect and dynamically monitor the development of mineralized deposits from a very early stage," the researchers wrote.

"We believe that this technique currently has a wide range of applications in studying the calcifications in diseased states as well as in the visualization of healthy mineralization such as in bone and tooth tissue engineering," said Georgakoudi. "As optical probe technology improves, this system could be used in people to aid with CAVD diagnosis, in determining the stability of atherosclerotic plaques, or in determining prognosis, by providing high resolution images, within the context of the natural environment."

Explore further: Scientists discover why some heart tissue turns into bone

More information: Lauren M. Baugh et al. Non-destructive two-photon excited fluorescence imaging identifies early nodules in calcific aortic-valve disease, Nature Biomedical Engineering (2017). DOI: 10.1038/s41551-017-0152-3

Related Stories

Scientists discover why some heart tissue turns into bone

March 12, 2015
Researchers from the Gladstone Institutes have used human cells to discover how blood flow in the heart protects against the hardening of valves in cardiovascular disease. What's more, they've identified a potential way to ...

Longer telomeres protect against diseases of aging: A tale of mice and men

March 27, 2017
Scientists at the Gladstone Institutes discovered a key mechanism that protects mice from developing a human disease of aging, and begins to explain the wide spectrum of disease severity often seen in humans. Both aspects ...

New study offers high-resolution images of heart valves

September 8, 2017
On Aug. 30, a team led by associate professor of biomedical engineering Morten Jensen published an article in the scientific journal PLOS ONE titled "High resolution imaging of the mitral valve in the natural state with ...

Study shows low mortality and stroke risks for minimally invasive aortic valve replacements

October 5, 2017
An analysis of more than 1,000 minimally invasive aortic valve replacements and more than 400 additional associated procedures over a five-and-a-half year period performed by Dr. Joseph Lamelas, professor and associate chief ...

FDA expands approval for 'valve in valve' aortic replacement

March 31, 2015
(HealthDay)—The U.S. Food and Drug Administration said Tuesday that use of the CoreValve "valve-in-valve" aortic replacement has been expanded to include people at extreme risk for serious complications of traditional ...

Drug developed for arthritis could be first to stop heart valve calcification

June 12, 2017
The first drug to treat calcification of heart valves may be one originally designed for rheumatoid arthritis.

Recommended for you

Eating yogurt may reduce cardiovascular disease risk

February 15, 2018
A new study in the American Journal of Hypertension, published by Oxford University Press, suggests that higher yogurt intake is associated with lower cardiovascular disease risk among hypertensive men and women.

Newly discovered gene may protect against heart disease

February 14, 2018
Scientists have identified a gene that may play a protective role in preventing heart disease. Their research revealed that the gene, called MeXis, acts within key cells inside clogged arteries to help remove excess cholesterol ...

Blood thinners may raise stroke risk in over-65s with kidney disease

February 14, 2018
People over 65 years old may be increasing their stroke risk by taking anticoagulants for an irregular heartbeat if they also have chronic kidney disease, finds a new study led by UCL, St George's, University of London and ...

Cardiac macrophages found to contribute to a currently untreatable type of heart failure

February 14, 2018
A team of Massachusetts General Hospital (MGH) investigators has discovered, for the first time, that the immune cells called macrophages contribute to a type of heart failure for which there currently is no effective treatment. ...

Study maps molecular mechanisms crucial for new approach to heart disease therapy

February 13, 2018
Creating new healthy heart muscle cells within a patient's own ailing heart. This is how scientists hope to reverse heart disease one day. Today, a new study led by UNC-Chapel Hill researchers reveals key molecular details ...

Quality toolkit improves care in Indian hospitals

February 13, 2018
A simple toolkit of checklists, education materials and quality and performance reporting improved the quality of care but not outcomes in hospitals in the south Indian state of Kerala and may have the potential to improve ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.