Organs on microchips for safe drug testing

November 30, 2017 by Monika Landgraf, Karlsruhe Institute of Technology
Organs on microchips for safe drug testing
Vanessa Kappings working with the “vasQchip” that combines miniaturized organs and realistically replicated blood vessels. Credit: Laila Tkotz, KIT

Miniaturized organs on a chip enable drug tests prior to application to humans. At Karlsruhe Institute of Technology (KIT), the team of Professor Ute Schepers has developed such an organ-on-a-chip system with accurately modeled blood vessels. In the category of "Young Researcher," doctoral candidate Vanessa Kappings, who is involved in the further development of the "vasQchip," has now been granted the 2017 LUSH PRIZE supporting animal-free testing in the amount of EUR 12,000 for her project.

New drugs are in high demand all over the world to treat infectious diseases, such as Ebola or AIDS, or age- and environmentally related diseases, such as Alzheimer's or cancer. Production of potential active substances meanwhile has become easier, but subsequent clinical studies still are time-consuming and expensive. Moreover, tests of on humans are associated with risks. Consequently, new substances are tested, characterized, and validated in conventional 2-D cell cultures and prior to use. Nevertheless, the results produced in conventional 2-D cell culture systems are often unreliable, because the cells grow in a 3-dimensional architecture in the human body and communicate with the surrounding matrix and other types of cells. Animal tests are expensive and time-consuming and cannot simply be transferred to human beings due to the altered genetic background. In addition, animal tests are ethically controversial.

Consequently, researchers develop so-called organ-on-a-chip systems. Based on cells of healthy humans and patients, miniaturized organs are applied onto a chip using 3-D printing methods. The team of Professor Ute Schepers of KIT's Institute of Toxicology and Genetics (ITG) has developed such a system with a physiologically correct model of a blood vessel system using round, porous channels. At KIT's spinoff vasQlab, Schepers further develops the "vasQchip" in cooperation with scientists of other disciplines. One of them is doctoral candidate Vanessa Kappings, who studied chemical biology at KIT and works in the area of tissue engineering, i.e. artificial production of biological tissues.

On the "vasQchip," the substances to be tested enter the miniaturized organs via the artificial . The organs' reaction can then be evaluated automatically. Thus, the effects and compatibility of a substance can already be studied in the pre-clinical phase without animal experiments or tests on human beings being required. Miniaturization enables parallelization and automation of thousands of tests on smallest space. Presently, the team is working on the development of perfused skin, liver, intestinal, and grain models as well as on tumor models and on the combination of various miniaturized organs on a chip.

"We want to supply pharmaceutical and cosmetic industries with better alternatives to animal tests and convince them of the advantages: A more precise prognosis of the effect on human beings, reduced costs, and replacement of tests on human beings and ," Vanessa Kappings says. Her work currently focuses on the development of tumor models.

Explore further: Gut-on-chip good predictor of drug side-effects

Related Stories

Gut-on-chip good predictor of drug side-effects

August 22, 2017
Research conducted at Leiden has established that guts-on-chips respond in the same way to aspirin as real human organs do. This is a sign that these model organs are good predictors of the effect of medical drugs on the ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Recommended for you

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Scientists grow functioning human neural networks in 3-D from stem cells

October 18, 2018
A team of Tufts University-led researchers has developed three-dimensional (3-D) human tissue culture models for the central nervous system that mimic structural and functional features of the brain and demonstrate neural ...

Functional engineered oesophagus could pave way for clinical trials 

October 18, 2018
The world's first functional oesophagus engineered from stem cells has been grown and successfully transplanted into mice, as part of a pioneering new study led by UCL.

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

New model suggests cuffless, non-invasive blood pressure monitoring possible using pulse waves

October 16, 2018
A large team of researchers from several institutions in China and the U.S. has developed a model that suggests it should be possible to create a cuffless, non-invasive blood pressure monitor based on measuring pulse waves. ...

Age-related increase in estrogen may cause common men's hernia

October 16, 2018
An age-related increase in estrogen may be the culprit behind inguinal hernias, a condition common among elderly men that often requires corrective surgery, according to a Northwestern Medicine study was published Oct. 15 ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.