Molecule plays dual role in bowel health and disease

November 30, 2017, eLife

A molecule that controls intestinal cell growth plays a dual role maintaining gut health and promoting diseases such as cancer, says a study in eLife.

The discovery in mice sheds light on the intricate mechanisms that control cell turnover in the gut, and provides a potential new therapeutic target for such as .

The lining of our intestine renews rapidly, replacing all of its cells approximately every three days. This rapid turnover is driven by '' - which originate in tiny crypts deep within the intestinal lining and migrate to the intestine surface where they mature.

Two groups of intestinal stem cells exist - an 'active' pool of cells that multiply at a steady rate to replace , and a 'dormant' group of reserve stem cells, which spring into action in response to damage. It is known that the groups are controlled by different mechanisms, but exactly how they each respond to different signals in health and disease remains unclear.

Recently, a group of molecules called microRNAs has been linked to the maintenance of normal intestinal cell turnover. "One microRNA called miR-31 is of particular interest in intestinal stem cells, because its levels increase during the progression of inflammation-associated bowel tumours," explains lead author Yuhua Tian, a postdoctoral researcher at China Agricultural University in Beijing. This prompted the team to study the function of miR-31 in mouse intestines under normal conditions and after injury.

They found that miR-31 was most present in the intestinal crypts, in cells that were actively growing. After radiation exposure, miR-31 levels sharply increased in regenerative units at 48 hours, suggesting that miR-31 was required for regeneration after injury.

They next studied mice engineered to have higher than normal miR-31 or no miR-31 at all. Mice with higher levels of miR-31 had larger intestinal crypts containing a higher number of stem cells and fewer mature specialised cells. Stem cells also multiplied faster in mice with elevated levels of miR-31. Loss of miR-31 had an adverse effect on regeneration after radiation, with a greater proportion of cells dying in these mice than in normal mice. But switching on miR-31 activated the dormant 'reserve' stem cells, allowing them to replenish the depleted pool of growing .

Given this role in accelerating growth, the team considered that miR-31 may also be involved in tumour promotion. Indeed, chemicals that mimic miR-31 increased growth of bowel cancer cell lines, and caused larger tumour volume in mice. Of greatest significance, however, was the observation that with tumours caused by loss of a gene called Apc developed far fewer tumours when miR-31 was deleted. As loss of Apc is a hallmark of human bowel cancer, miR-31 could be a potential therapeutic target for the disease.

"We have shown that miR-31 is a master regulator of the normal and pathological growth of intestinal and acts as a promoter of tumour growth," said senior author Zhengquan Yu, Professor of Biochemistry and Molecular Biology at China Agricultural University. "The next steps will be to build on our insights into the signalling pathways through which miR-31 exerts its effects to fully evaluate its potential as a in cancer."

Explore further: Stem cells in intestinal lining may shed light on behavior of cancer cells

More information: Yuhua Tian et al, Stress responsive miR-31 is a major modulator of mouse intestinal stem cells during regeneration and tumorigenesis, eLife (2017). DOI: 10.7554/eLife.29538

Related Stories

Stem cells in intestinal lining may shed light on behavior of cancer cells

November 27, 2017
The lining of the intestines - the epithelium - does more than absorb nutrients from your lunch. It grows, shrinks, and adjusts the very makeup of its cells in response to whatever you just ate. And understanding that process ...

Gut microbes' metabolite dampens proliferation of intestinal stem cells

June 2, 2016
Intestinal stem cells are among the most rapidly dividing cells in the body, busily creating new cells to replace the ones that are constantly being sloughed off. But unlike stem cells elsewhere in the body, those in the ...

Single gene encourages growth of intestinal stem cells, supporting 'niche' cells—and cancer

April 28, 2017
A gene previously identified as critical for tumor growth in many human cancers also maintains intestinal stem cells and encourages the growth of cells that support them, according to results of a study led by Johns Hopkins ...

Cancer-linked protein helps control fate of intestinal stem cells

March 9, 2015
An international group of researchers has shown that a regulatory protein involved in controlling how cancer spreads through the body also influences the fate of stem cells in the intestine of mice. The results, which are ...

Tales from the crypt lead researchers to cancer discovery

March 30, 2012
Tales from the crypt are supposed to be scary, but new research from Vanderbilt University, the HudsonAlpha Institute for Biotechnology and colleagues shows that crypts can be places of renewal too: intestinal crypts, that ...

Recommended for you

Human 'chimeric' cells restore crucial protein in Duchenne muscular dystrophy

March 16, 2018
Cells made by fusing a normal human muscle cell with a muscle cell from a person with Duchenne muscular dystrophy —a rare but fatal form of muscular dystrophy—were able to significantly improve muscle function when implanted ...

Team develops 3-D tissue model of a developing human heart

March 16, 2018
The heart is the first organ to develop in the womb and the first cause of concern for many parents.

Genetic variant discovery to help asthma sufferers

March 16, 2018
Research from the University of Liverpool, published today in Lancet Respiratory Medicine, identifies a genetic variant that could improve the safety and effectiveness of corticosteroids, drugs that are used to treat a range ...

Researchers say use of artificial intelligence in medicine raises ethical questions

March 15, 2018
In a perspective piece, Stanford researchers discuss the ethical implications of using machine-learning tools in making health care decisions for patients.

Study identifies potential drug for treatment of debilitating inherited neurological disease

March 15, 2018
St. Jude Children's Research Hospital scientists have demonstrated in mouse studies that the neurological disease spinal bulbar muscular atrophy (SBMA) can be successfully treated with drugs. The finding paves the way for ...

Clearing clumps of protein in aging neural stem cells boosts their activity

March 15, 2018
Young, resting neural stem cells in the brains of mice store large clumps of proteins in specialized cellular trash compartments known as lysosomes, researchers at the Stanford University School of Medicine have found.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.