Molecule plays dual role in bowel health and disease

November 30, 2017, eLife

A molecule that controls intestinal cell growth plays a dual role maintaining gut health and promoting diseases such as cancer, says a study in eLife.

The discovery in mice sheds light on the intricate mechanisms that control cell turnover in the gut, and provides a potential new therapeutic target for such as .

The lining of our intestine renews rapidly, replacing all of its cells approximately every three days. This rapid turnover is driven by '' - which originate in tiny crypts deep within the intestinal lining and migrate to the intestine surface where they mature.

Two groups of intestinal stem cells exist - an 'active' pool of cells that multiply at a steady rate to replace , and a 'dormant' group of reserve stem cells, which spring into action in response to damage. It is known that the groups are controlled by different mechanisms, but exactly how they each respond to different signals in health and disease remains unclear.

Recently, a group of molecules called microRNAs has been linked to the maintenance of normal intestinal cell turnover. "One microRNA called miR-31 is of particular interest in intestinal stem cells, because its levels increase during the progression of inflammation-associated bowel tumours," explains lead author Yuhua Tian, a postdoctoral researcher at China Agricultural University in Beijing. This prompted the team to study the function of miR-31 in mouse intestines under normal conditions and after injury.

They found that miR-31 was most present in the intestinal crypts, in cells that were actively growing. After radiation exposure, miR-31 levels sharply increased in regenerative units at 48 hours, suggesting that miR-31 was required for regeneration after injury.

They next studied mice engineered to have higher than normal miR-31 or no miR-31 at all. Mice with higher levels of miR-31 had larger intestinal crypts containing a higher number of stem cells and fewer mature specialised cells. Stem cells also multiplied faster in mice with elevated levels of miR-31. Loss of miR-31 had an adverse effect on regeneration after radiation, with a greater proportion of cells dying in these mice than in normal mice. But switching on miR-31 activated the dormant 'reserve' stem cells, allowing them to replenish the depleted pool of growing .

Given this role in accelerating growth, the team considered that miR-31 may also be involved in tumour promotion. Indeed, chemicals that mimic miR-31 increased growth of bowel cancer cell lines, and caused larger tumour volume in mice. Of greatest significance, however, was the observation that with tumours caused by loss of a gene called Apc developed far fewer tumours when miR-31 was deleted. As loss of Apc is a hallmark of human bowel cancer, miR-31 could be a potential therapeutic target for the disease.

"We have shown that miR-31 is a master regulator of the normal and pathological growth of intestinal and acts as a promoter of tumour growth," said senior author Zhengquan Yu, Professor of Biochemistry and Molecular Biology at China Agricultural University. "The next steps will be to build on our insights into the signalling pathways through which miR-31 exerts its effects to fully evaluate its potential as a in cancer."

Explore further: Stem cells in intestinal lining may shed light on behavior of cancer cells

More information: Yuhua Tian et al, Stress responsive miR-31 is a major modulator of mouse intestinal stem cells during regeneration and tumorigenesis, eLife (2017). DOI: 10.7554/eLife.29538

Related Stories

Stem cells in intestinal lining may shed light on behavior of cancer cells

November 27, 2017
The lining of the intestines - the epithelium - does more than absorb nutrients from your lunch. It grows, shrinks, and adjusts the very makeup of its cells in response to whatever you just ate. And understanding that process ...

Gut microbes' metabolite dampens proliferation of intestinal stem cells

June 2, 2016
Intestinal stem cells are among the most rapidly dividing cells in the body, busily creating new cells to replace the ones that are constantly being sloughed off. But unlike stem cells elsewhere in the body, those in the ...

Single gene encourages growth of intestinal stem cells, supporting 'niche' cells—and cancer

April 28, 2017
A gene previously identified as critical for tumor growth in many human cancers also maintains intestinal stem cells and encourages the growth of cells that support them, according to results of a study led by Johns Hopkins ...

Cancer-linked protein helps control fate of intestinal stem cells

March 9, 2015
An international group of researchers has shown that a regulatory protein involved in controlling how cancer spreads through the body also influences the fate of stem cells in the intestine of mice. The results, which are ...

Tales from the crypt lead researchers to cancer discovery

March 30, 2012
Tales from the crypt are supposed to be scary, but new research from Vanderbilt University, the HudsonAlpha Institute for Biotechnology and colleagues shows that crypts can be places of renewal too: intestinal crypts, that ...

Recommended for you

Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018
A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System ...

New study finds that fat consumption is the only cause of weight gain

July 13, 2018
Scientists from the University of Aberdeen and the Chinese Academy of Sciences have undertaken the largest study of its kind looking at what components of diet—fat, carbohydrates or protein—caused mice to gain weight.

Basic research in fruit flies leads to potential drug for diseases afflicting millions

July 13, 2018
River blindness and elephantiasis are debilitating diseases caused by parasitic worms that infect as many as 150 million people worldwide. They are among the "neglected tropical diseases" for which better treatments are desperately ...

Light based cochlear implant restores hearing in gerbils

July 12, 2018
A team of researchers with members from a variety of institutions across Germany has developed a new type of cochlear implant—one based on light. In their paper published in the journal Science Translational Medicine, the ...

Researchers discover gene that controls bone-to-fat ratio in bone marrow

July 12, 2018
In an unexpected discovery, UCLA researchers have found that a gene previously known to control human metabolism also controls the equilibrium of bone and fat in bone marrow as well as how an adult stem cell expresses its ...

Intensive care patients' muscles unable to use fats for energy

July 12, 2018
The muscles of people in intensive care are less able to use fats for energy, contributing to extensive loss of muscle mass, finds a new study co-led by UCL, King's College London and Guy's and St Thomas' NHS Foundation Trust.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.