Researchers reverse heart failure in Marfan mice

November 14, 2017, Johns Hopkins University School of Medicine
Marfan hearts fail when exposed to stress levels well-tolerated by normal mice. Johns Hopkins Medicine researchers were able to reverse this heart failure with drug therapies. Credit: Johns Hopkins Medicine

In experiments with mice that have a rodent form of Marfan syndrome, Johns Hopkins researchers report that even modestly increasing stress on the animals' hearts—at levels well-tolerated in normal mice—can initiate heart failure.

The findings, described August 4 in the Journal of Clinical Investigation Insight, revealed a novel cellular pathway in heart tissue that leads to and may serve as a model for a new standard of treatment for children with this aggressive form of Marfan syndrome.

Marfan syndrome is a genetic disorder that affects connective tissue throughout the body, elongating limbs, fingers and toes, for example. However, its worst effects are in the heart's blood vessels and valves. Aortic enlargement, heart valve leaks and heart —marked by heart enlargement and weakened pumping action—are all potentially life-threatening.

The Hopkins team's interest in the mouse model grew out of the clinical experience of children with Marfan seen at The Johns Hopkins Hospital over decades.

"There is a small population of children with particularly aggressive and early onset symptoms of Marfan syndrome, who show dramatic signs of heart failure with only a relatively modest amount of valve leakage," says Hal Dietz, M.D., the Victor A. McKusick Professor of Genetics and Medicine, and professor of pediatrics at the Johns Hopkins University School of Medicine, whose research in Marfan syndrome's causes and treatment spans decades.

Studying heart failure in humans with Marfan syndrome is complicated in part because it is unclear whether the genetic defect in heart muscle is itself to blame, or whether stresses on the organ normally tolerated by healthy hearts—such as a modest increase in blood pressure—are present to trigger it, according to Rosanne Rouf, M.D., director of the outpatient heart failure program at the Johns Hopkins Bayview Medical Center and assistant professor of medicine at the Johns Hopkins University School of Medicine.

To address some of that complexity, Rouf, Dietz and their colleagues induced stress on the hearts of both wild-type and Marfan using a technique called transverse aortic constriction (TAC), which slightly tightens the aorta of experimental mice, mimicking raised blood pressure and inducing a precisely measureable amount of stress to the heart.

Researchers observed the mice's response to very mild TAC over the course of five weeks. The Marfan mice showed profound heart failure within one week, while the wild-type mice did not fail at all by the end of five weeks.

Using echocardiograms, the researchers observed that the TAC Marfan mouse hearts had dramatically increased in size, weighing an average of 200 milligrams, compared to control mice, weighing an average of 75 milligrams—a sign of profound heart failure in both mice and humans.

"The difference between Marfan mice and healthy mice was striking," says Rouf. "If we expose Marfan hearts to just slight stress, they are in heart failure within one week, whereas normal mice tolerate this level of stress with no problems."

The researchers then studied what was happening within the of TAC Marfan mice to induce heart failure. They found that the muscle cells of the heart were becoming enlarged because they were receiving abnormal growth chemical signals from neighboring support cells called fibroblasts, which make up the structural framework of the heart.

By tracking the signals among cells, the researchers found that one of the affected pathways was a protein called transforming growth factor beta, which is believed to be increased in people with Marfan syndrome and the source of many of the condition's symptoms, Dietz says.

Using this knowledge, Rouf and the research team repeated their experiments, but this time introduced drug therapies that inhibited the growth factor's signaling pathway. Specifically, they gave the mice losartan, a drug currently on the market for treating hypertension, and refametinib, an experimental drug in clinical trials for cancer, a disorder marked by abnormal cell growth. The researchers were able to reverse heart failure in all TAC Marfan mice.

Current treatments for heart failure in Marfan patients are limited to complicated surgeries at specialized centers to fix valve leaks, but patients do not always regain heart function as expected.

"This research shows that, rather than taking a one-size-fits-all approach, we need to be much more proactive in figuring out which children may have earlier than usual signs of heart failure and operate before there is any decline in heart function to spare their hearts further stress."

The new studies also suggest that drugs such as losartan and the experimental anti-cancer medicine may one day be shown to reverse failure in children with the most aggressive form of Marfan. But, Dietz emphasized that much more animal and human research would be needed to demonstrate their value.

About 1 in 5,000 people have Marfan syndrome, according to The Marfan Foundation. This includes men and women of all ethnic groups. There is a 50 percent chance that a person with Marfan syndrome will pass along the genetic mutation to their children.

Explore further: Drug treatment for Marfan syndrome looks promising

More information: Rosanne Rouf et al. Nonmyocyte ERK1/2 signaling contributes to load-induced cardiomyopathy in Marfan mice, JCI Insight (2017). DOI: 10.1172/jci.insight.91588

Related Stories

Drug treatment for Marfan syndrome looks promising

June 26, 2008
A small study in 18 pattients assessing the effectiveness of the drug losartan for treating Marfan syndrome in children has yielded encouraging results. Reporting in the June 26 issue of The New England Journal of Medicine, ...

Mouse studies shed light on how protein controls heart failure

October 18, 2017
A new study on two specially bred strains of mice has illuminated how abnormal addition of the chemical phosphate to a specific heart muscle protein may sabotage the way the protein behaves in a cell, and may damage the way ...

New treatment for Marfan syndrome shows promise

November 18, 2014
An investigational treatment for Marfan syndrome is as effective as the standard therapy at slowing enlargement of the aorta, the large artery of the heart that delivers blood to the body, new research shows. The findings ...

Scientists reverse advanced heart failure in an animal model

October 4, 2017
Researchers have discovered a previously unrecognized healing capacity of the heart. In a mouse model, they were able to reverse severe heart failure by silencing the activity of Hippo, a signaling pathway that can prevent ...

Common blood pressure drug treats muscular dystrophy in mice

January 22, 2007
Researchers at Johns Hopkins have shown that a drug commonly used to lower blood pressure reverses muscle wasting in genetically engineered mice with Marfan syndrome and also prevents muscle degeneration in mice with Duchenne ...

Animal studies reveal new route to treating heart disease

May 2, 2011
Scientists at Johns Hopkins have shown in laboratory experiments in mice that blocking the action of a signaling protein deep inside the heart's muscle cells blunts the most serious ill effects of high blood pressure on the ...

Recommended for you

Research team traces pathway to cardioprotection in post-ischemic heart failure

December 11, 2018
During an ischemic attack, the heart is temporarily robbed of its blood supply. The aftermath is devastating: reduced heart contractility, heart cell death, and heart failure. Contributing to these detrimental changes is ...

Macrophage cells key to helping heart repair—and potentially regenerate, new study finds

December 11, 2018
Scientists at the Peter Munk Cardiac Centre have identified the type of cell key to helping the heart repair and potentially regenerate following a heart attack.

Study reveals new link between atrial fibrillation and mutations in heart disease gene

December 11, 2018
Atrial fibrillation (Afib), a heart condition that causes a rapid, irregular heartbeat that increases a person's risk of stroke and heart failure, is fairly common among older adults. However, its early onset form is relatively ...

Researchers have found that incidence of heart failure was around two-fold higher in people with diabetes

December 11, 2018
Researchers have found that incidence of heart failure was around two-fold higher in people with diabetes.

Study: Age, race differences determine risk of stroke in women and men

December 11, 2018
A new study found that, between the ages of 45 and 74 years, white women were less likely to have a stroke than white men, but at age 75 and older, there was no difference in stroke risk between white women and men. In contrast, ...

Workplace exposure to pesticides and metals linked to heightened heart disease risk

December 11, 2018
Workplace exposure to metals and pesticides is linked to a heightened risk of heart disease in Hispanic and Latino workers, reveals research published online in the journal Heart.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.