Study establishes benchmarks for HIV vaccine candidates

December 27, 2017, La Jolla Institute for Allergy and Immunology
Study establishes benchmarks for HIV vaccine candidates
Naïve precursor B cells that can give rise to mature B cells producing broadly neutralizing antibodies—a requirement for a successful antibody-based HIV vaccine—successfully compete in a germinal center following immunization with a high-affinity germline targeting nanoparticle. Credit: Courtesy of Dr. Robert Abbott, La Jolla Institute for Allergy and Immunology

The development of a vaccine that protects against HIV infections has proven extraordinarily difficult. One of the reasons is that naïve precursor B cells that can give rise to mature B cells producing broadly neutralizing antibodies—a requirement for a successful antibody-based HIV vaccine—are considered to be exceedingly rare within the average human.

Publishing in the December 26, 2017, online issue of the journal Immunity, researchers at the La Jolla Institute for Allergy and Immunology (LJI) now show that despite their low frequency these B cell precursors can be successfully primed to prevail over their B cell competitors under the right conditions.

"We had shown in an earlier study that we can find these B cells in most humans but at a very low cell frequency, about one in a million. What we didn't know was whether that was enough cells to elicit an effective ," says senior author Shane Crotty, Ph.D., a professor in LJI's Division of Vaccine Discovery. "We had the numbers, but we didn't know what they actually meant." By providing an answer, the current study closes the knowledge gap about competition between different immune responses and establishes defined benchmarks candidates should be compared against for consideration before they are put into clinical trials.

"As the vaccine field is getting much more sophisticated, we need to understand the requirements for good vaccine design so we can elicit the immune response we want as opposed to a competing one," explains postdoctoral researcher and first author Robert Abbott, Ph.D. "What we found is that when you reduce the precursor frequency to one in a million, the vaccine candidate's affinity becomes a distinct separating factor for competitive success of a B cell."

Germinal centers, specialized areas within lymph nodes, are the central arena where the competition for immunodominance plays out. Before B cells are able to produce neutralizing antibodies they have to persevere in a competitive, multi-step maturation process that selectively promotes the proliferation of B cells that produce antibodies that bind the best to the virus or other immune stimulant. B cells undergo a specialized process called affinity maturation in which they undergo successive rounds of mutation and selection ultimately resulting in increasingly better antiviral antibodies.

"B cells have to actually transform their normal DNA, in some instances quite substantially, to be able to effectively chase the virus over time" says Abbott. In the B cells that produce broadly neutralizing anti-HIV antibodies, meaning those that can bind to the many variants that occur rapidly in different individuals as the virus tries to evade the immune response, the level of mutation can be extraordinarily high, changing 30 to 50 % of the genes encoding them. It helps explain why it can take years before HIV-infected individuals start making these neutralizing antibodies. But it also presents a unique challenge for an HIV vaccine since conventional vaccination protocols are unlikely to generate enough of the desired mutations to enable protective antiviral immune response.

That led Scripps Research Institute professor and co-author William Schief, Ph.D., to conceive a sophisticated, multi-step protocol designed to shepherd B cells closer and closer toward producing broadly neutralizing antibody. The process is based on vaccinating with a series of gradually changing immunogens, which are the substances related to the virus used to elicit the immune response. The process is comparable to teaching a B cell that recognizes squares to bind to circles by using pentagons as an intermediate step.

The vaccination step studied by LJI researchers was the first or 'priming' step, which is designed to expand the pool of suitable precursor B cells. To assess the roles of immunogen affinity and precursor frequency during that first step, the team developed a mouse model that allowed them to recapitulate physiological human B cell frequencies. They were particularly interested in B cells that give rise to 'VRC01-class' antibodies, which are some of the best found in HIV-infected individuals.

"The idea here is to find shortcuts that focus on B cells that look the right way and teach them to go into the right direction," says Crotty. "After this step, immunized people won't have neutralizing antibodies but the idea is you get more of the B cells that could—after some other help and with additional immunizations— develop into B that produce neutralizing ." It is a general vaccine strategy that has never been tested before in humans but given the right immunogen it can work, predicts Crotty.

Explore further: Findings in humans provide encouraging foundation for upcoming AIDS vaccine clinical trial

Related Stories

Findings in humans provide encouraging foundation for upcoming AIDS vaccine clinical trial

March 24, 2016
Some people infected with HIV naturally produce antibodies that effectively neutralize many strains of the rapidly mutating virus, and scientists are working to develop a vaccine capable of inducing such "broadly neutralizing" ...

Why evolution is the challenge—and the promise—in developing a vaccine against HIV

December 1, 2017
To fight HIV, the development of immunization strategies must keep up with how quickly the virus modifies itself. Now, Boston Children's Hospital researchers are developing models to test HIV vaccines on a faster and broader ...

Training human antibodies to protect against HIV

September 8, 2016
During HIV infection, the virus mutates too rapidly for the immune system to combat, but some people produce antibodies that can recognize the virus even two years after infection. With an eye towards developing a vaccine, ...

Researchers map pathways to protective antibodies for an HIV vaccine

March 15, 2017
A Duke Health-led research team has described both the pathway of HIV protective antibody development and a synthetic HIV outer envelope mimic that has the potential to induce the antibodies with vaccination.

Researchers uncover clues about how HIV virus mutates

June 1, 2017
A new study published in Cell Host & Microbe led by researchers at Fred Hutchinson Cancer Research Center completely maps all mutations that help the HIV virus evolve away from a single broadly neutralizing antibody, known ...

Researchers find alternative pathways to HIV antibodies

May 4, 2016
The immune system appears to hamper an investigational vaccine from inducing antibodies that protect against HIV infection, but there may be ways to overcome this impediment, according to research led by the Duke Human Vaccine ...

Recommended for you

Study shows how HIV is shielded from immune attack

July 10, 2018
Scientists from UNSW Sydney and the UK have discovered that the human immunodeficiency virus (HIV) hijacks a small molecule from the host cell to protect itself from being destroyed by the host's immune system.

Out-of-pocket costs put HIV prevention drug out of reach for many at risk

July 4, 2018
Public health officials are expanding efforts to get the HIV prevention pill into the hands of those at risk, in a nationwide effort to curb infections. But the officials are hitting roadblocks—the drug's price tag, which ...

New simulation tool predicts how well HIV-prophylaxis will work

June 14, 2018
A new mathematical simulation approach predicts the efficacy of pre- and post-exposure prophylaxis (PrEP) medications, which help prevent HIV infection. The framework, presented in PLOS Computational Biology by Sulav Duwal ...

Many at risk for HIV despite lifesaving pill

June 11, 2018
Multiple barriers may stop high-risk individuals from accessing an HIV drug that can reduce the subsequent risk of infection, according to a new University of Michigan study.

Active HIV in large white blood cells may drive cognitive impairment in infected mice

June 7, 2018
Macrophages, large white blood cells that engulf and destroy potential pathogens, harbor active viral reserves that appear to play a key role in impaired learning and memory in mice infected with a rodent version of HIV. ...

HIV vaccine elicits antibodies in animals that neutralize dozens of HIV strains

June 4, 2018
An experimental vaccine regimen based on the structure of a vulnerable site on HIV elicited antibodies in mice, guinea pigs and monkeys that neutralize dozens of HIV strains from around the world. The findings were reported ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Porgie
1 / 5 (2) Dec 27, 2017
Why are we spending millions on this? What a shame. If as much went into diabetes research there would be no diabetes. Its a disgrace to spend on this when other things are so much more important.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.