Number of genetic markers linked to lifespan triples

December 7, 2017, University of Connecticut
Credit: CC0 Public Domain

A new large-scale international study expands the number of genetic markers now known to be associated with exceptional longevity.

Researchers at the University of Connecticut, University of Exeter, University of Wisconsin and University of Iowa undertook a genome-wide search for variants influencing how long participants' parents lived. Their findings indicated genes that could one day be targeted to help prolong human life.

The team studied 389,166 volunteers who took part in the U.K. Biobank, with confirmation in the U.S. Health and Retirement Study and the Wisconsin Longitudinal Study. DNA samples carry the genetics of biological parents, which provide a practical way of studying exceptionally long lifespans.

Eight genetic variants had already been linked to lifespan, mainly variants that are involved in heart disease and dementia. The latest study, published in the journal Aging, has expanded this to 25 genes in all, with some specific to mothers' or fathers' lifespan separately.

"We have identified new pathways that contribute to survival, as well as confirming others," said study author Dr. Luke Pilling of the University of Exeter. "These targets offer potentially modifiable targets to reduce risk of an earlier death and improve health."

Researchers found a genetic risk score combining the top 10 variants was statistically associated with parents being centenarians.

How long we live is determined by a range of factors including our lifestyle and how well we treat factors including blood pressure and cholesterol from midlife. However, genetics, and how long our parental relatives lived, also play a role.

Genes involved in senescence, the "frozen" state that cells enter into after being damaged, played an important role in longevity. Drugs targeting senescence have already been shown to extend life in laboratory animals.

Genes related to inflammation and auto-immunity related genes were also prominent, opening up the possibility that precision anti-inflammatory treatments may one day be helpful in extending life.

"These findings add to a growing body of knowledge highlighting specific targets and biological pathways useful for the development of interventions designed to help maintain health, function, and independence in later life," said Dr. George Kuchel, professor of geriatrics at the University of Connecticut School of Medicine and director of the UConn Center on Aging.

The results confirm that many genetic variants combine to influence human lifespan: no single gene has been found to be responsible.

Professor David Melzer, of the University of Exeter Medical School, who led the group said: "This study helps open the way to novel treatment, but the strong role for genes affecting risk again underlines the importance of controlling and cholesterol levels throughout the . Of course, adopting healthy lifestyles is important, and can probably overcome the negative effects of most of the found so far."

Explore further: Long-lived parents could mean a healthier heart into your 70s

More information: Pilling LC, Kuo C, Sicinski K, Tamosauskaite J, Kuchel GA, Harries LW, Herd P, Wallace R, Ferrucci L, Melzer D. Human longevity: 25 genetic loci associated in 389,166 UK biobank participants. Aging (Albany NY). 2017 Dec 6. [Epub ahead of print] www.aging-us.com/article/101334/text

Related Stories

Long-lived parents could mean a healthier heart into your 70s

August 15, 2016
The longer our parents lived, the longer we are likely to live ourselves, and the more likely we are to stay healthy in our sixties and seventies. Having longer-lived parents means we have with much lower rates of a range ...

New findings suggest a genetic influence on aging into the 90s but not beyond

July 18, 2017
Variants of a gene thought to be linked to longevity appear to influence aging into the 90s, but do not appear to affect exceptional longevity, or aging over 100, a new study has found.

Learning and staying in shape key to longer lifespan, study finds

October 13, 2017
People who are overweight cut their life expectancy by two months for every extra kilogramme of weight they carry, research suggests.

Diabetes and heart disease linked by genes, study reveals

September 4, 2017
Type 2 diabetes (T2D) has become a global epidemic affecting more than 380 million people worldwide; yet there are knowledge gaps in understanding the etiology of type-2 diabetes. T2D is also a significant risk factor for ...

Inflammatory bowel disease: Scientists zoom in on genetic culprits

June 28, 2017
Scientists have closed in on specific genes responsible for Inflammatory Bowel Disease (IBD) from a list of over 600 genes that were suspects for the disease. The team from the Wellcome Trust Sanger Institute and their collaborators ...

Common strength 'genes' identified for first time

July 12, 2017
Common genetic factors that influence muscle strength in humans have been identified for the first time in a study led by researchers from the University of Cambridge and published today in Nature Communications.

Recommended for you

Add broken DNA repair to the list of inherited colorectal cancer risk factors

February 23, 2018
An analysis of nearly 3,800 colorectal cancer patients—the largest germline risk study for this cancer to date—reveals opportunities for improved risk screening and, possibly, treatment.

Team identifies genetic defect that may cause rare movement disorder

February 22, 2018
A Massachusetts General Hospital (MGH)-led research team has found that a defect in transcription of the TAF1 gene may be the cause of X-linked dystonia parkinsonism (XDP), a rare and severe neurodegenerative disease. The ...

Defects on regulators of disease-causing proteins can cause neurological disease

February 22, 2018
When the protein Ataxin1 accumulates in neurons it causes a neurological condition called spinocerebellar ataxia type 1 (SCA1), a disease characterized by progressive problems with balance. Ataxin1 accumulates because of ...

15 new genes identified that shape human faces

February 20, 2018
Researchers from KU Leuven (Belgium) and the universities of Pittsburgh, Stanford, and Penn State have identified 15 genes that determine facial features. The findings were published in Nature Genetics.

New algorithm can pinpoint mutations favored by natural selection in large sections of the human genome

February 20, 2018
A team of scientists has developed an algorithm that can accurately pinpoint, in large regions of the human genome, mutations favored by natural selection. The finding provides deeper insight into how evolution works, and ...

New software helps detect adaptive genetic mutations

February 20, 2018
Researchers from Brown University have developed a new method for sifting through genomic data in search of genetic variants that have helped populations adapt to their environments. The technique, dubbed SWIF(r), could be ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.