Exercise changes gut microbial composition independent of diet, team reports

December 4, 2017 by Diana Yates, University of Illinois at Urbana-Champaign
Jacob Allen, left, Jeffrey Woods and their colleagues found that exercise alters the microbial composition of the gut in potentially beneficial ways. Credit: L. Brian Stauffer

Two studies - one in mice and the other in human subjects - offer the first definitive evidence that exercise alone can change the composition of microbes in the gut. The studies were designed to isolate exercise-induced changes from other factors - such as diet or antibiotic use - that might alter the intestinal microbiota.

In the first study, scientists transplanted fecal material from exercised and sedentary into the colons of sedentary germ-free mice, which had been raised in a sterile facility and had no microbiota of their own. In the second study, the team tracked changes in the composition of in human participants as they transitioned from a sedentary lifestyle to a more active one - and back again.

"These are the first studies to show that can have an effect on your gut independent of diet or other factors," said Jeffrey Woods, a University of Illinois professor of kinesiology and community health who led the research with former doctoral student Jacob Allen, now a postdoctoral researcher at Nationwide Children's Hospital in Columbus, Ohio. The work with mice was conducted at the U. of I. and with scientists at the Mayo Clinic in Rochester, Minnesota, who develop and maintain the germ-free mice. The work in humans was conducted at Illinois.

In the mouse study, changes in the microbiota of recipient mice mirrored those in the donor mice, with clear differences between those receiving microbes from exercised and sedentary mice.

"That proved to us that the transplant worked," Woods said.

Recipients of the exercised mouse microbiota also had a higher proportion of microbes that produce butyrate, a short-chain fatty acid that promotes healthy intestinal cells, reduces inflammation and generates energy for the host. They also appeared to be more resistant to experimental ulcerative colitis, an inflammatory bowel disease.

"We found that the animals that received the exercised microbiota had an attenuated response to a colitis-inducing chemical," Allen said. "There was a reduction in inflammation and an increase in the regenerative molecules that promote a faster recovery."

In the human study, the team recruited 18 lean and 14 obese sedentary adults, sampled their gut microbiomes, and started them on an exercise program during which they performed supervised cardiovascular exercise for 30-60 minutes three times a week for six weeks. The researchers sampled participants' gut microbiomes again at the end of the and after another six weeks of sedentary behavior. Participants maintained their usual diets throughout the course of the study.

Fecal concentrations of SCFAs, in particular butyrate, went up in the human gut as a result of exercise. These levels declined again after the participants reverted to a . Genetic tests of the confirmed that this corresponded to changes in the proportion of microbes that produce butyrate and other SCFAs.

The most dramatic increases were seen in lean participants, who had significantly lower levels of SCFA-producing microbes in their guts to begin with. Obese participants saw only modest increases in the proportion of SCFA-producing microbes. The ratios of different in the gut also differed between lean and obese participants at every stage of the study, the researchers said.

"The bottom line is that there are clear differences in how the microbiome of somebody who is obese versus somebody who is lean responds to exercise," Woods said. "We have more work to do to determine why that is."

Explore further: Fecal transplant success for diabetes might depend on the recipient's gut microbes

More information: Jacob M. Allen et al, Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans, Medicine & Science in Sports & Exercise (2017). DOI: 10.1249/MSS.0000000000001495

J. M. Allen et al. Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice, Gut Microbes (2017). DOI: 10.1080/19490976.2017.1372077

Related Stories

Fecal transplant success for diabetes might depend on the recipient's gut microbes

October 3, 2017
A small clinical trial in the Netherlands found that a fecal transplant from a lean donor can temporarily improve insulin resistance in obese men—but only half of the recipients responded. Upon further investigation, the ...

New way to prevent unfavorable intestinal microbiota

October 25, 2017
The trillions of microbes living in a mammal's intestine play an important role in the host's metabolism and immunity. The composition of microbiota is maintained by antimicrobial proteins secreted from intestinal cells. ...

Gut microbes contribute to age-associated inflammation, mouse study finds

April 12, 2017
Inflammation increases with age and is a strong risk factor for death in the elderly, but the underlying cause has not been clear. A study published April 12 in Cell Host & Microbe reveals that gut microbes are one of the ...

Your microbiota's previous dining experiences may make new diets less effective

December 29, 2016
Your microbiota may not be on your side as you try improving your diet this New Year's. In a study published December 29 in Cell Host & Microbe, researchers explore why mice that switch from an unrestricted American diet ...

Continuous exercise training after MI beneficial in mice

August 10, 2015
(HealthDay)—Continuous exercise training before and after myocardial infarction (MI) is associated with improved adverse left ventricular (LV) remodeling in mice, according to a study published in the July 15 issue of the ...

Changes in the diet affect epigenetics via the microbiota

November 23, 2016
You are what you eat, the old saying goes, but why is that so? Researchers have known for some time that diet affects the balance of microbes in our bodies, but how that translates into an effect on the host has not been ...

Recommended for you

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.