The human brain can 'see' what is around the corner

December 4, 2017, University of Glasgow
The human brain can ‘see’ what is around the corner
Credit: University of Glasgow

Neuroscientists at the University of Glasgow have shown how the human brain can predict what our eyes will see next, using functional magnetic resonance imaging (fMRI).

In a new study published in the Nature journal Scientific Reports, researchers have gained a greater understanding of visual mechanisms, and how seeing is a constant two-way dialogue between the and the eyes.

The research, led by Professor Lars Muckli of the University of Glasgow, used fMRI and a visual illusion to show that the brain anticipates the information it will see when the eyes next move.

The illusion involves two stationary flashing squares that look to the observer as one square moving between the two locations because the brain predicts motion. During these flashes, the authors instructed participants to move their eyes. The researchers imaged the visual cortex and found that the prediction of motion updated to a new spatial position in cortex with the eye movement.

We move our eyes approximately 4 times per second, meaning our brains have to process new every 250 milliseconds. Nevertheless, the world appears stable. If you were to move your video camera so frequently, the film would appear jumpy. The reason we still perceive the world as stable is because our brains think ahead. In other words, the brain predicts what it is going to see after you have moved your eyes.

Professor Lars Muckli, of the Institute of Neuroscience & Psychology, said: "This study is important because it demonstrates how fMRI can contribute to this area of . Further to that, finding a feasible mechanism for brain function will contribute to brain-inspired computing and artificial intelligence, as well as aid our investigation into mental disorders."

The study also reveals the potential for fMRI to contribute to this area of neuroscience research, as the authors are able to detect a difference in processing of only 32ms, much faster than is typically thought possible with fMRI.

Scientist Dr Gracie Edwards:" Visual information is received from the eyes and processed by the visual system in the brain. We call visual information "feedforward" input. At the same time, the brain also sends information to the visual system, this information is called "feedback".

"Feedback information influences our perception of the feedforward input using expectations based on our memories of similar perceptual events. Feedforward and feedback information interact with one another to produce the visual scenes we perceive every day."

The study, "Predictive feedback to V1 dynamically updates with sensory input" is published in Scientific Reports.

Explore further: Scientists uncover a new layer in visual brain imaging

More information: Grace Edwards et al. Predictive feedback to V1 dynamically updates with sensory input, Scientific Reports (2017). DOI: 10.1038/s41598-017-16093-y

Related Stories

Scientists uncover a new layer in visual brain imaging

October 5, 2015
Neuroscientists have gained new insight into how the brain perceives the world by using high resolution high field MRI to study activity in different layers of the visual cortex in great detail.

Sound and vision: Visual cortex processes auditory information too

May 25, 2014
Scientists studying brain process involved in sight have found the visual cortex also uses information gleaned from the ears as well as the eyes when viewing the world.

How the brain sees the world in 3-D

March 21, 2017
We live in a three-dimensional world, but everything we see is first recorded on our retinas in only two dimensions.

Brain disconnections may contribute to Parkinson's hallucinations

September 27, 2017
Researchers have found that disconnections of brain areas involved in attention and visual processing may contribute to visual hallucinations in individuals with Parkinson's disease, according to a new study published online ...

Synapses in the brain mirror the structure of the visual world

July 12, 2017
The research team of Prof. Sonja Hofer at the Biozentrum, University of Basel, has discovered why our brain might be so good at perceiving edges and contours. Neurons that respond to different parts of elongated edges are ...

Blind people have brain map for 'visual' observations too

May 17, 2017
Is what you're looking at an object, a face, or a tree? When processing visual input, our brain uses different areas to recognize faces, body parts, scenes, and objects. Scientists at KU Leuven (University of Leuven), Belgium, ...

Recommended for you

New neurons in the adult brain are involved in sensory learning

February 23, 2018
Although we have known for several years that the adult brain can produce new neurons, many questions about the properties conferred by these adult-born neurons were left unanswered. What advantages could they offer that ...

Study in mice suggests personalized stem cell treatment may offer relief for multiple sclerosis

February 22, 2018
Scientists have shown in mice that skin cells re-programmed into brain stem cells, transplanted into the central nervous system, help reduce inflammation and may be able to help repair damage caused by multiple sclerosis ...

Nolan film 'Memento' reveals how the brain remembers and interprets events from clues

February 22, 2018
Key repeating moments in the film give viewers the information they need to understand the storyline. The scenes cause identical reactions in the viewer's brain. The results deepen our understanding of how the brain functions, ...

Biomarker, clues to possible therapy found in novel childhood neurogenetic disease

February 22, 2018
Researchers studying a rare genetic disorder that causes severe, progressive neurological problems in childhood have discovered insights into biological mechanisms that drive the disease, along with early clues that an amino ...

A look at the space between mouse brain cells

February 22, 2018
Between the brain's neurons and glial cells is a critical but understudied structure that's been called neuroscience's final frontier: the extracellular space. With a new imaging paradigm, scientists can now see into and ...

Schizophrenia a side effect of human development

February 21, 2018
Schizophrenia may have evolved as an "unwanted side effect" of the development of the complex human brain, a new study has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.