Inflammation drives progression of Alzheimer's

December 21, 2017, German Center for Neurodegenerative Diseases
PET scan of a human brain with Alzheimer's disease. Credit: public domain

According to a study published in the journal Nature by scientists of the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn, inflammatory mechanisms caused by the brain's immune system drive the progression of Alzheimer's disease. These findings, which rely on a series of laboratory experiments, provide new insights into pathogenetic mechanisms that are believed to hold potential for tackling Alzheimer's before symptoms manifest. The researchers envision that one day, this may lead to new treatments.

Alzheimer's is a devastating neurodegenerative condition ultimately leading to dementia. An effective treatment does not yet exist. The disease is associated with the aberrant aggregation of small amyloid-beta (Abeta) proteins that accumulate in the brain and appear to harm neurons. In recent years, studies have revealed that deposits of Abeta, known as plaques, trigger inflammatory mechanisms of the brain's innate immune system. However, the precise processes that lead to neurodegeneration and progression of pathology have thus far not been fully understood.

"Deposition and spreading of Abeta pathology likely precede the appearance of clinical symptoms such as memory problems by decades. Therefore, a better understanding of these processes might be a key for novel therapeutic approaches. Such treatments would target Alzheimer's at an early stage, before cognitive deficits manifest," says Prof. Michael Heneka, a senior researcher at the DZNE and Director of the Department of Neurodegenerative Diseases and Gerontopsychiatry at the University of Bonn.

An Inflammatory Cascade

Prof. Heneka and coworkers have been investigating the role of the brain's immune response in the progression of Abeta pathology for some time. Previous work by the group published in Nature in 2013 established that the molecular complex NLRP3, which is an innate immune sensor, is activated in brains of Alzheimer's patients and contributes to the pathogenesis of Alzheimer's in the murine model.

NLRP3 is a so-called inflammasome that triggers production of highly pro-inflammatory cytokines. Furthermore, upon activation, NLRP3 forms large signaling complexes with the adapter protein ASC that can be released from cells. "The release of ASC specks from activated cells has so far only been documented in macrophages, and their relevance in disease processes has so far remained a mystery," says Prof. Eicke Latz of the University of Bonn.

In the current study, it was demonstrated that ASC specks are also released from activated immune cells in the brain, the microglia. Moreover, the findings provide a direct molecular link to classical hallmarks of neurodegeneration. "We found that ASC specks bind to Abeta in the extracellular space and promote aggregation of Abeta, thus directly linking innate immune activation with the progression of pathology," Heneka says.

Novel Approach for Therapy?

This view is supported by a series of experiments in mouse models of Alzheimer's disease. In these, the researchers investigated the effects of ASC specks and its component, the ACS protein, on the spreading of Abeta deposits in the brain.

"Additionally, analysis of human brain material indicates at several levels that inflammation and Abeta pathology may interact in a similar fashion in humans. Together, our findings suggest that brain inflammation is not just a bystander phenomenon, but a strong contributor to disease progression," Heneka says. "Therefore, targeting this immune response will be a novel treatment modality for Alzheimer's."

Explore further: Diagnosing Alzheimer's earlier rather than later

More information: Carmen Venegas et al, Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer's disease, Nature (2017). DOI: 10.1038/nature25158

Related Stories

Diagnosing Alzheimer's earlier rather than later

May 9, 2016
A hallmark of Alzheimer's disease is the appearance of plaques in the brain. The plaques are gradually made up by the aggregation of a small protein called amyloid-beta or "Abeta". Alzheimer's is usually diagnosed late, when ...

Alzheimer's culprit causes memory loss even before brain degeneration

May 29, 2015
The study, published May 29 in the open access Nature Publishing Group journal Scientific Reports, reveals a direct link between the main culprit of Alzheimer's disease and memory loss.

Designer protein gives new hope to scientists studying Alzheimer's disease

July 22, 2016
A new protein which will help scientists to understand why nerve cells die in people with Alzheimer's disease has been designed in a University of Sussex laboratory.

An implant to prevent Alzheimer's

March 17, 2016
In a cutting-edge treatment for Alzheimer's disease, EPFL scientists have developed an implantable capsule that can turn the patient's immune system against the disease.

Targeting inflammatory pathway reduces Alzheimer's disease in mice

December 15, 2014
Alzheimer's disease (AD) is the most common form of dementia and is characterized by the formation of β-amyloid plaques throughout the brain. Proteins known as chemokines regulate inflammation and the immune response. In ...

Recommended for you

A new way of thinking about tau kinetics, an essential component of Alzheimer's disease

March 21, 2018
Alzheimer's disease is most often characterized by two different pathologies in the brain: plaque deposits of a protein called beta-amyloid and tangles of another protein called tau. A paper appearing March 21 in the journal ...

Could drugs used after an organ transplant protect against Alzheimer's?

March 21, 2018
A UT Southwestern study in mice provides new clues about how a class of anti-rejection drugs used after organ transplants may also slow the progression of early-stage Alzheimer's disease.

Cell therapy could improve brain function for Alzheimer's disease

March 15, 2018
Like a great orchestra, your brain relies on the perfect coordination of many elements to function properly. And if one of those elements is out of sync, it affects the entire ensemble. In Alzheimer's disease, for instance, ...

Physically fit women nearly 90 percent less likely to develop dementia

March 14, 2018
Women with high physical fitness at middle age were nearly 90 percent less likely to develop dementia decades later, compared to women who were moderately fit, according to a study published the March 14, 2018, online issue ...

Poor sleep may heighten Alzheimer's risk

March 12, 2018
(HealthDay)—Older adults who are sleepy during the day might have harmful plaque building in their brain that is a sign of impending Alzheimer's disease, researchers report.

Dementia patients with distorted memories may actually retain key information – researchers say

March 7, 2018
Some memories containing inaccurate information can be beneficial to dementia sufferers because it enables them to retain key information researchers say.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.