Scientists discover new way to help nerve regeneration in spinal cord injury

December 11, 2017, University of Bristol
Credit: CC0 Public Domain

There is currently no cure for spinal cord injury or treatment to help nerve regeneration so therapies offering intervention are limited. People with severe spinal cord injuries can remain paralysed for life and this is often accompanied by incontinence.

A team led by Drs Liang-Fong Wong and Nicolas Granger from Bristol's Faculty of Health Sciences has successfully transplanted genetically modified that secrete a treatment molecule shown to be effective at removing the scar following . The scar in the damaged spinal cord typically limits recovery by blocking .

Previous work by the team proved olfactory ensheathing cells - which are taken from the 'smell system' where they regenerate and repair throughout life to maintain sense of smell, could be genetically modified to secrete a treatment enzyme known as chondroitinase ABC (ChABC). This treatment enzyme is key in breaking down the glial scar at the injury point of the spinal cord and helping to promote nerve regrowth.

However, while previous studies have shown ChABC to be effective at promoting nerve regrowth when injected in experimental models of spinal cord injury as a drug treatment, it degrades rapidly at body temperature and repeated administration may be required to maintain efficacy.

In this study, researchers combined both treatments to treat rodents with spinal cord injury with genetically modified olfactory ensheathing cells to express ChABC. Following transplantation of the cells in rodent models the team were able to demonstrate the successful secretion of ChABC enzyme and removal of some of the glial scar. This led to increased nerve sprouting in the spinal cord, suggestive of successful following the treatment.

The study provides an important proof-of-concept that this cell transplant strategy is a viable method to deliver this key ChABC enzyme in a rodent model of spinal cord injury and could be potentially used to allow the cells to be more efficient at repairing the spinal cord.

Dr Liang-Fong Wong from Bristol Medical School, said: "While these initial results look promising, in order to determine the longer-term survival of our and assess functional recovery, such as recovery of walking or recovery of continence, we need to carry out further studies to test these cell transplants in more chronic injury models."

Dr Nicolas Granger from the Bristol Veterinary School added: "Taking this therapy further, for example by applying it to companion dogs that are naturally affected by spinal cord and remained paralysed, could help improve recovery of walking in these dogs in the longer term and pave the way for this approach to be applied to human injuries."

The work was funded by grants from the Wellcome Trust, the Biotechnology and Biological Sciences Research Council (BBSRC) and from the University's Elizabeth Blackwell Institute for health research.

Explore further: Gene therapy improves limb function following spinal cord injury

More information: 'Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury' D Carwardine et al PLOS ONE.

Related Stories

Gene therapy improves limb function following spinal cord injury

April 1, 2014
Delivering a single injection of a scar-busting gene therapy to the spinal cord of rats following injury promotes the survival of nerve cells and improves hind limb function within weeks, according to a study published April ...

Using donor stem cells to treat spinal cord injury

August 28, 2017
A new study in mice published in The Journal of Neuroscience details a potential therapeutic strategy that uses stem cells to promote recovery of motor activity after spinal cord injury.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Stem cell scarring aids recovery from spinal cord injury

October 31, 2013
In a new study, researchers at Karolinska Institutet in Sweden show that the scar tissue formed by stem cells after a spinal cord injury does not impair recovery; in fact, stem cell scarring confines the damage. The findings, ...

Silk could be used to repair damaged spinal cords

October 26, 2017
Modified silk from Asian wild silkworms could be used in a strategy to repair damaged spinal cords, according to scientists from the universities of Aberdeen and Oxford.

Potential target for restoring ejaculation in men with spinal cord injuries or ejaculatory disorders

December 5, 2016
New research provides insights on how to restore the ability to ejaculate in men who are not able to do so.

Recommended for you

Study finds alcohol dampens brain waves associated with decision-making but not motor control

March 15, 2018
We all know that alcohol impairs our judgement, alertness and performance on tasks requiring attention, but the mechanism behind booze's effect on cognition still isn't well-understood. Now, a new study led by psychologists ...

Breakthrough discovery in neurotransmission

March 15, 2018
Samir Haj-Dahmane, Ph.D., senior research scientist at the University at Buffalo Research Institute on Addictions, has discovered how certain neurotransmitters are transported and reach their targets in the brain, which could ...

Research reveals brain mechanism involved in language learning

March 15, 2018
Learning a new language may be more of a science than an art, a University of Sussex study finds.

New research sheds light on underlying cause of brain injury in stroke

March 15, 2018
New research shows how the novel drug QNZ-46 can help to lessen the effects of excess release of glutamate in the brain – the main cause of brain injury in stroke.

New tissue technique gives stunning 3-D insights into the human brain

March 15, 2018
Imperial researchers have helped develop a breakthrough imaging technique which reveals the ultra-fine structure of the brain in unprecedented detail.

Cell therapy could improve brain function for Alzheimer's disease

March 15, 2018
Like a great orchestra, your brain relies on the perfect coordination of many elements to function properly. And if one of those elements is out of sync, it affects the entire ensemble. In Alzheimer's disease, for instance, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.