How metal scaffolds enhance the bone healing process

January 22, 2018, Charité - Universitätsmedizin Berlin
How metal scaffolds enhance the bone healing process
Over the course of 24 weeks, new bone tissue developed, filling the titanium scaffold’s honeycomb-like structure. Both types of scaffold are depicted here. Credit: Julius Wolff Institut/Charité

A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated in this preclinical study, both the speed and effectiveness of the process depend upon the stiffness of the implant used, with softer constructs enhancing the healing process. The findings have been reported in the current issue of Science Translational Medicine.

The treatment of large defects in the upper or lower extremities (for instance, as the result of acute trauma, infection or ) remains a challenge in the field of trauma surgery. Bone defects of this kind do not heal on their own, and in particularly severe cases, will result in amputation of the affected limb. One treatment option is to use the patient's own bone tissue to produce of the correct size and strength. However, this technique has been of limited success. An alternative treatment option, offered by Charité's Center for Musculoskeletal Surgery, is to treat large bone defects using individualized titanium-mesh scaffolds designed to fit the individual patient.

This technique uses CT scan data to produce a 3-D model of the affected bone and the bone defect. Using a 3-D printer with laser sintering technology, these data are then used to manufacture a titanium scaffold to patient-specific requirements. The customized structure is surgically implanted into the affected bone. Results of this procedure are promising, with a total of 19 patients at Charité having so far been treated using this type of implant.

To promote , the titanium-mesh scaffold is filled with the patient's own , growth factors, and bone replacement material. Led by Dr. Anne-Marie Pobloth (Julius Wolff Institute at Charité), an interdisciplinary team of trauma surgeons, engineers, veterinary surgeons and biologists has studied whether mechanical optimization of the titanium-mesh scaffold might enhance the healing process. "We started by using computer modeling to mechanobiologically optimize a standard-size scaffold. Using a large animal model, we were then able to study its actual effects on bone regeneration. As the process of bone regeneration is very similar to that found in humans, we were able to make inferences regarding in humans," explains the veterinarian.

The optimized scaffold has a honeycomb-like structure aligned to form channels that guide the ingrowth of bone. By altering the strut diameter of the honeycomb, the researchers produced structures of varying stiffness. "We assumed that bone regrowth would vary according to the stiffness of the implanted scaffold. Therefore, in order to study the effects of mechanical stimulation during the bone regeneration process, we used four test groups receiving implants of varying stiffness," explains Prof. Dr. Georg N. Duda.

Trauma surgeon Dr. Philipp Schwabe says, "After only three months, radiographic evidence showed that soft implants produced faster bone growth in response to increased mechanical stimulation than stiffer implants." The biomechanical properties of the implant affected both the quantity and quality of newly formed bone, as well as on the type of produced within the .

The team plans to produce mechanobiologically optimized, softer titanium-mesh scaffolds, ensuring patients can benefit from their findings and making it easier to treat bone defects. Rather than being restricted to use with the long bones of the arms and legs, it is also conceivable that this method may be able to be used in spinal, oral and maxillofacial surgery.

Explore further: New study compares bone-inducing properties of 3-D-printed mineralized scaffolds

More information: Anne-Marie Pobloth et al, Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep, Science Translational Medicine (2018). DOI: 10.1126/scitranslmed.aam8828

Related Stories

New study compares bone-inducing properties of 3-D-printed mineralized scaffolds

February 13, 2017
A new study of bone formation from stem cells seeded on 3D-printed bioactive scaffolds combined with different mineral additives showed that some of the scaffold mineral composites induced bone-forming activity better than ...

Nanofibres developed for healing bone fractures

January 18, 2017
In the future, it may be possible to use nanofibres to improve the attachment of bone implants, or the fibres may be used directly to scaffold bone regeneration. This would aid the healing of fractures and may enable the ...

Elucidation of bone regeneration mechanism

November 3, 2017
How osteoblasts are supplied during bone regeneration has been controversial among bone researchers. According to Atsushi Kawakami, an Associate Professor who specializes in tissue regeneration and led the study, scientists ...

Designing bone healing therapies that better mimic regeneration

February 15, 2017
The range of biomimetic approaches to promote bone growth that are at the core of current bone healing therapies need to more closely emulate natural regenerative mechanisms. A review of biomimetic strategies to help heal ...

Recommended for you

New inflammation inhibitor discovered

November 16, 2018
A multidisciplinary team of researchers led from Karolinska Institutet in Sweden have developed an anti-inflammatory drug molecule with a new mechanism of action. By inhibiting a certain protein, the researchers were able ...

Gut hormone and brown fat interact to tell the brain it's time to stop eating

November 15, 2018
Researchers from Germany and Finland have shown that so-called "brown fat" interacts with the gut hormone secretin in mice to relay nutritional signals about fullness to the brain during a meal. The study, appearing November ...

Brain, muscle cells found lurking in kidney organoids grown in lab

November 15, 2018
Scientists hoping to develop better treatments for kidney disease have turned their attention to growing clusters of kidney cells in the lab. One day, so-called organoids—grown from human stem cells—may help repair damaged ...

How the Tasmanian devil inspired researchers to create 'safe cell' therapies

November 15, 2018
A contagious facial cancer that has ravaged Tasmanian devils in southern Australia isn't the first place one would look to find the key to advancing cell therapies in humans.

Researchers discover important connection between cells in the liver

November 15, 2018
University of Minnesota Medical School researchers have made a discovery which could lead to a new way of thinking about how disease pathogenesis in the liver is regulated, which is important for understanding the condition ...

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.