How metal scaffolds enhance the bone healing process

January 22, 2018, Charité - Universitätsmedizin Berlin
How metal scaffolds enhance the bone healing process
Over the course of 24 weeks, new bone tissue developed, filling the titanium scaffold’s honeycomb-like structure. Both types of scaffold are depicted here. Credit: Julius Wolff Institut/Charité

A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated in this preclinical study, both the speed and effectiveness of the process depend upon the stiffness of the implant used, with softer constructs enhancing the healing process. The findings have been reported in the current issue of Science Translational Medicine.

The treatment of large defects in the upper or lower extremities (for instance, as the result of acute trauma, infection or ) remains a challenge in the field of trauma surgery. Bone defects of this kind do not heal on their own, and in particularly severe cases, will result in amputation of the affected limb. One treatment option is to use the patient's own bone tissue to produce of the correct size and strength. However, this technique has been of limited success. An alternative treatment option, offered by Charité's Center for Musculoskeletal Surgery, is to treat large bone defects using individualized titanium-mesh scaffolds designed to fit the individual patient.

This technique uses CT scan data to produce a 3-D model of the affected bone and the bone defect. Using a 3-D printer with laser sintering technology, these data are then used to manufacture a titanium scaffold to patient-specific requirements. The customized structure is surgically implanted into the affected bone. Results of this procedure are promising, with a total of 19 patients at Charité having so far been treated using this type of implant.

To promote , the titanium-mesh scaffold is filled with the patient's own , growth factors, and bone replacement material. Led by Dr. Anne-Marie Pobloth (Julius Wolff Institute at Charité), an interdisciplinary team of trauma surgeons, engineers, veterinary surgeons and biologists has studied whether mechanical optimization of the titanium-mesh scaffold might enhance the healing process. "We started by using computer modeling to mechanobiologically optimize a standard-size scaffold. Using a large animal model, we were then able to study its actual effects on bone regeneration. As the process of bone regeneration is very similar to that found in humans, we were able to make inferences regarding in humans," explains the veterinarian.

The optimized scaffold has a honeycomb-like structure aligned to form channels that guide the ingrowth of bone. By altering the strut diameter of the honeycomb, the researchers produced structures of varying stiffness. "We assumed that bone regrowth would vary according to the stiffness of the implanted scaffold. Therefore, in order to study the effects of mechanical stimulation during the bone regeneration process, we used four test groups receiving implants of varying stiffness," explains Prof. Dr. Georg N. Duda.

Trauma surgeon Dr. Philipp Schwabe says, "After only three months, radiographic evidence showed that soft implants produced faster bone growth in response to increased mechanical stimulation than stiffer implants." The biomechanical properties of the implant affected both the quantity and quality of newly formed bone, as well as on the type of produced within the .

The team plans to produce mechanobiologically optimized, softer titanium-mesh scaffolds, ensuring patients can benefit from their findings and making it easier to treat bone defects. Rather than being restricted to use with the long bones of the arms and legs, it is also conceivable that this method may be able to be used in spinal, oral and maxillofacial surgery.

Explore further: New study compares bone-inducing properties of 3-D-printed mineralized scaffolds

More information: Anne-Marie Pobloth et al, Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep, Science Translational Medicine (2018). DOI: 10.1126/scitranslmed.aam8828

Related Stories

New study compares bone-inducing properties of 3-D-printed mineralized scaffolds

February 13, 2017
A new study of bone formation from stem cells seeded on 3D-printed bioactive scaffolds combined with different mineral additives showed that some of the scaffold mineral composites induced bone-forming activity better than ...

Nanofibres developed for healing bone fractures

January 18, 2017
In the future, it may be possible to use nanofibres to improve the attachment of bone implants, or the fibres may be used directly to scaffold bone regeneration. This would aid the healing of fractures and may enable the ...

Elucidation of bone regeneration mechanism

November 3, 2017
How osteoblasts are supplied during bone regeneration has been controversial among bone researchers. According to Atsushi Kawakami, an Associate Professor who specializes in tissue regeneration and led the study, scientists ...

Designing bone healing therapies that better mimic regeneration

February 15, 2017
The range of biomimetic approaches to promote bone growth that are at the core of current bone healing therapies need to more closely emulate natural regenerative mechanisms. A review of biomimetic strategies to help heal ...

Recommended for you

Bioprinting bone substitute materials with cell-laden bioinks

August 21, 2018
Bone tissue engineering (BTE) is a developing field in materials science and bioengineering, in which researchers aim to engineer an ideal, bioinspired material to promote assisted bone repair. Since experimental strategies ...

I hear what you say! Or do I?

August 21, 2018
Even with an acute sense of hearing adults don't always pick up exactly what someone has said. That's because from childhood to adulthood we rely on vision to understand speech and this can influence our perception of sound.

How do muscles know what time it is?

August 21, 2018
How do muscle cells prepare for the particular metabolic challenges of the day? Scientists at Helmholtz Zentrum München and Ludwig-Maximilians-Universität München (LMU), members of the German Center for Diabetes Research ...

High-speed atomic force microscopy reveals clock protein interactions

August 21, 2018
For the first time, researchers have seen how proteins involved in the daily biological clock interact with each other, helping them to further understand a process tied to numerous metabolic and eating disorders, problems ...

Could vitamin B3 treat acute kidney injury?

August 20, 2018
Acute kidney injury, an often fatal condition without a specific treatment, affects up to 10 percent of all hospitalized adults in the United States and 30-40 percent in low-income countries. The condition causes a build-up ...

New assay to detect genetic abnormalities in sarcomas outperforms conventional techniques

August 20, 2018
Sarcomas are rare tumors that are often misdiagnosed. Specific recurrent chromosomal rearrangements, known as translocations, can serve as essential diagnostic markers and are found in about 20 percent of sarcomas. Identification ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.