Secrets of longevity protein revealed in new study

January 17, 2018, Yale University

Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure of one of these proteins, beta-Klotho, illuminating its intricate mechanism and therapeutic potential.

The study findings, published in Nature, could have implications for therapies developed to treat a wide range of medical conditions, including diabetes, obesity, and certain cancers, the researchers said.

The Klotho family of two are located on the surface of cells of specific tissues. The proteins bind to a family of hormones, designated endocrine FGFs, that regulate critical metabolic processes in the liver, kidneys, and brain, among other organs. To understand how beta-Klotho works, the research team used X-ray crystallography, a technique that provides high-resolution, three-dimensional views of these proteins.

The researchers' analysis yielded several insights. First, beta-Klotho is the primary receptor that binds to FGF21, a key hormone produced upon starvation. When bound to beta-Klotho, FGF21 stimulates insulin sensitivity and , causing weight loss. This new understanding of beta-Klotho and FGF21 can guide the development of therapies for conditions such as type 2 diabetes in obese patients, the researchers said.

"Like insulin, FGF21 stimulates metabolism including ," said Joseph Schlessinger, senior author and chair of pharmacology at Yale School of Medicine. "In animals and in some clinical trials of FGF21, it shows that you can increase burning of calories without changing food intake, and we now understand how to improve the biological activity of FGF21." The authors also describe a new variant of FGF21 that has 10 times higher potency and cellular activity.

Additionally, the research team presented evidence of how a structurally-related enzyme, glycosidase, which breaks down sugars, evolved into a receptor for a hormone that lowers blood sugar—which may not be a coincidence, Schlessinger added.

Having untangled the structure of beta-Klotho, Schlessinger and his colleagues have a platform for exploring potential therapies for multiple diseases. By developing drugs that enhance the pathway, he said, researchers can target diabetes and obesity. Conversely, using agents that block the pathway, they hope to explore therapies for conditions such as liver cancer and bone diseases, among others.

"The next step will be to make better hormones, make new potent blockers, do animal studies, and move forward," Schlessinger said.

Explore further: Liver hormone reduces preference for sweets, alcohol, via brain's reward pathway

More information: Sangwon Lee et al, Structures of β-klotho reveal a 'zip code'-like mechanism for endocrine FGF signalling, Nature (2018). DOI: 10.1038/nature25010

Related Stories

Liver hormone reduces preference for sweets, alcohol, via brain's reward pathway

December 24, 2015
A liver hormone works via the brain's reward pathway to reduce cravings for sweets and alcohol in mammals, UT Southwestern Medical Center researchers have found.

Pancreatic factor promotes remyelination in the central nervous system after injury

August 25, 2017
Brain functions are maintained by the neural network. Neural network is formed by the connection between the neurite, and this connection is supported by the wrapping of myelin. Demyelination is detected in the patients of ...

Liver-brain pathway may regulate alcohol consumption

November 28, 2016
In the largest study of its kind, UT Southwestern Medical Center researchers and colleagues in Europe identified a gene variant that suppresses the desire to drink alcohol.

Life-extending hormone bolsters the body's immune function

January 11, 2016
A hormone that extends lifespan in mice by 40% is produced by specialized cells in the thymus gland, according to a new study by Yale School of Medicine researchers. The team also found that increasing the levels of this ...

Hormone may help fight obesity and reduce cholesterol

September 3, 2013
Research has shown that giving obese rodents a recently identified circulating protein called fibroblast growth factor 21 (FGF21) helps improve their metabolism. Now investigators reporting in the Cell Press journal Cell ...

Low levels of circulating protein linked to kidney function decline

January 19, 2017
Higher blood levels of a protein called klotho may help preserve kidney function, according to a study appearing in an upcoming issue of the Journal of the American Society of Nephrology (JASN). Although additional studies ...

Recommended for you

Fabric imbued with optical fibers helps fight skin diseases

February 23, 2018
A team of researchers with Texinov Medical Textiles in France has announced that their PHOS-ISTOS system, called the Fluxmedicare, is on track to be made commercially available later this year. The system consists of a piece ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Fertility breakthrough: New research could extend egg health with age

February 22, 2018
Women have been told for years that if they don't have children before their mid-30s, they may not be able to. But a new study from Princeton University's Coleen Murphy has identified a drug that extends egg viability in ...

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.