New approach reduces immune response to tissue engineered vascular grafts

February 7, 2018, Mary Ann Liebert, Inc
Credit: Mary Ann Liebert, Inc., publishers

Using RNA interference (RNAi) technology to silence an immune-stimulating complex in endothelial cells (EC), the main cellular component of blood vessels, researchers have made it possible to use the plentiful supply of donor ECs instead of a patient's own cells to generate tissue engineered vascular grafts for transplantation. This innovative method, in which the treated EC retain their key features and functions, is reported in Tissue Engineering, Part A.

In the article entitled "Low Immunogenic Endothelial Cells Maintain Morphofunctional Properties Needed for Tissue Engineering," Skadi Lau, Dorothee Eicke, Constança Figueiredo, Ulrike Böer, and coauthors from Hannover Medical School, Germany describe their approach using lentiviral vector-mediated RNAi to silence the (HLA) class I complex in donor EC collected from three different sources: peripheral blood, umbilical cord blood, and vein. The researchers demonstrated that HLA I-silenced EC were still able to express essential surface biomarkers and compounds needed to form a tight barrier between cells, to produce factors important for blood coagulation and regulating blood vessel tone, and to form capillary-like tube structures when put into 3D fibrin gels.

"This article demonstrates the impact of RNA interference technology on the development of tissue engineered leveraging available allogeneic cell sources," says Tissue Engineering Co-Editor-in-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX.

Explore further: Vascular bypass grafting: A biomimetic engineering approach

More information: Skadi Lau et al, Low Immunogenic Endothelial Cells Maintain Morphological and Functional Properties Required for Vascular Tissue Engineering, Tissue Engineering Part A (2017). DOI: 10.1089/ten.tea.2016.0541

Related Stories

Vascular bypass grafting: A biomimetic engineering approach

January 23, 2018
When a patient with heart disease is in need of a vascular graft but doesn't have any viable veins or arteries in his or her own body, surgeons can rely on synthetic, tissue-engineering grafts. However, the body often treats ...

Heparan sulfate biomaterials retain structure and function after gamma irradiation

January 25, 2018
A new study has shown that heparan sulfate, a desirable natural material for use in bioengineered tissues and orthotic implants, can withstand the stress of gamma irradiation for sterilization and retain its structure, binding ...

Bioengineered blood vessel appears safe for dialysis patients

May 13, 2016
Man-made blood vessels developed by researchers at Duke University, Yale University and the tissue engineering company Humacyte appear to be both safe and more durable than commonly used synthetic versions in patients undergoing ...

New recombinant antibody can isolate stem cells from umbilical cord blood

September 3, 2013
A new recombinant antibody can detect and isolate mesenchymal stem cells (MSCs), a nonembryonic source of stem cells with promising applications in tissue engineering, blood stem cell transplantation, and treatments for immune-mediated ...

New tissue-engineered blood vessel replacements one step closer to human trials

November 1, 2017
Researchers at the University of Minnesota have created a new lab-grown blood vessel replacement that is composed completely of biological materials, but surprisingly doesn't contain any living cells at implantation. The ...

Researchers propose mechanism for spread of metastatic breast cancer to bone

November 4, 2016
New research explains how metastatic breast cancer cells might use bone marrow-derived mesenchymal stem cells (MSCs) to help them spread to bone tissue. A study using a 3D scaffold model has shown that breast tumor-derived ...

Recommended for you

New light-based technology reveals how cells communicate in human disease

December 11, 2018
Scientists at the University of York have developed a new technique that uses light to understand how cells communicate in human disease.

Study may offer doctors a more effective way to treat neuroblastoma

December 7, 2018
A very large team of researchers, mostly from multiple institutions across Germany, has found what might be a better way to treat patients with neuroblastoma, a type of cancer. In their paper published in the journal Science, ...

Progress made in transplanting pig hearts into baboons

December 6, 2018
A large team of researchers from several institutions in Germany, Sweden, Switzerland and the U.S. has transplanted pig hearts into baboons and kept them alive for an extended period of time. In their paper published in the ...

'Chemo brain' caused by malfunction in three types of brain cells, study finds

December 6, 2018
More than half of cancer survivors suffer from cognitive impairment from chemotherapy that lingers for months or years after the cancer is gone. In a new study explaining the cellular mechanisms behind this condition, scientists ...

Hybrid prevalence estimation: Method to improve intervention coverage estimations

December 6, 2018
LSTM's Professor Joseph Valadez is senior author on a new study published today in the Proceedings of the National Academy of Sciences, which outlines proposals for a more accurate estimator of health data.

World's smallest wearable device warns of UV exposure, enables precision phototherapy

December 5, 2018
The world's smallest wearable, battery-free device has been developed by Northwestern Medicine and Northwestern's McCormick School of Engineering scientists to measure exposure to light across multiple wavelengths, from the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.