Study suggests way to attack deadly, untreatable nerve tumors

February 12, 2018, Cincinnati Children's Hospital Medical Center
This microscopic image uses immunostaining to highlight the presence of TAZ/YAP (shown in green) in human malignant peripheral nerve sheath tumors that grew from Schwann cells. The job of Schwann cells is to form the protective nerve sheath. The cell nuclei are shown in blue. The image is from a study by scientists at Cincinnati Children's published by the journal Cancer Cell. Credit: Cincinnati Children's

Genomic profiling of mostly untreatable and deadly nerve sheath tumors led scientists to test a possible therapeutic strategy that inhibited tumor growth in lab tests on human tumor cells and mouse models, according to research in the journal Cancer Cell.

When the international team of researchers analyzed complete screens of genes and genetic material in malignant peripheral nerve sheath tumors (MPNSTs), it revealed previously unknown genetic information about the disease.

"This uncovered we did not expect for these untreatable tumors, but our findings also need further study before knowing whether they will be relevant to patient treatment in the clinic," said Q. Richard Lu, PhD, lead author and scientific director of the Brain Tumor Center at the Cincinnati Children's Cancer and Blood Diseases Institute.

Researchers show a gene called Lats1/2 suppresses cancer, and losing the gene's expression reprograms cells so they rapidly expand and become cancerous. Loss of Lats1/2 also causes other genes in the HIPPO signaling pathway (which controls tissue growth) to become hyperactive. These hyperactive genes and their associated proteins (TAZ and YAP) then work with the protein TEAD1 to activate molecular cancer programs that form MPNSTs.

When researchers disrupted overactive TAZ-YAP in mice bred to lack Lats1/2, they also blocked signaling from PDGF (platelet-derived growth factor receptor), which supports tissue growth. These steps reduced the size and number of MPNSTs in the mice. They also inhibited the growth of human MPNST cells in laboratory cultures.

In their future work, Lu and his colleagues want to identify small-molecule agents that will inhibit TAZ-YAP and the downstream cancer programs they activate, he said. The researchers also need to identify druggable locations on the surface of MPNST cells or HIPPO signaling cascade inside cells. This would allow small molecular inhibitors to attach to and attack the cells.

Like A Car Without Brakes

MPNST's develop in what are called Schwann cells. These form the myelin sheath. The myelin sheath functions as a protective insulation around peripheral nerves, which connect the brain and spinal cord to extremities and organs and promote transmission of nerve impulses.

About half of MPNSTs are linked to mutation of the NF1 gene, which causes a condition called Neurofibromatosis 1, researchers say. The other half of MPNSTs have no known genetic origins, and a small proportion of cases can be caused by radiotherapy given to people for cancer treatment, according to the authors.

The NF1 gene normally helps control a balanced rate of cell growth. When it mutates, it can cause brown spots on a person or benign tumors along peripheral nerves. In some cases, NF1 mutation can lead to cases of runaway cell growth, creating very large and sometimes medically problematic plexiform tumors which can turn into MPNSTs.

MPNSTs are biologically aggressive tumors and resistant to treatments like chemo and radiation therapy. They're also known for high relapse rates and poor prognosis, often leading to death.

Explore further: Researchers develop model for better testing, targeting of malignant peripheral nerve sheath tumors

More information: Cancer Cell (2018). DOI: 10.1016/j.ccell.2018.01.005

Related Stories

Researchers develop model for better testing, targeting of malignant peripheral nerve sheath tumors

May 20, 2013
University of Minnesota Medical School researchers from the Masonic Cancer Center, University of Minnesota, in partnership with the University's Brain Tumor Program, have developed a new mouse model of malignant peripheral ...

Study identifies potential therapeutic target for incurable, rare type of soft-tissue cancer

December 26, 2013
A deadly, rare type of soft-tissue cancer may be completely eradicated simply by inhibiting a key protein involved in its growth, UT Southwestern Medical Center researchers report.

Research identifies targeted molecular therapy for untreatable NF1 tumors

December 10, 2012
Researchers conducting a preclinical study in mice successfully used targeted molecular therapy to block mostly untreatable nerve tumors that develop in people with the genetic disorder Neurofibromatosis 1 (NF1).

Scientists make mouse model of human cancer, demonstrate cure

March 5, 2013
UT Southwestern Medical Center scientists report the first successful blocking of tumor development in a genetic mouse model of an incurable human cancer.

Study identifying cell of origin for large, disfiguring nerve tumors lays groundwork for development

November 11, 2014
UT Southwestern Medical Center researchers have determined the specific type of cell that gives rise to large, disfiguring tumors called plexiform neurofibromas, a finding that could lead to new therapies for preventing growth ...

HIPPO's molecular balancing act helps nerves not short circuit

April 26, 2017
Scientists write in Nature Communications it may be possible to therapeutically fine tune a constantly shifting balance of molecular signals to ensure the body's peripheral nerves are properly insulated and functioning normally. ...

Recommended for you

Fully reprogrammed virus offers new hope as cancer treatment

May 25, 2018
A cancer treatment that can completely destroy cancer cells without affecting healthy cells could soon be a possibility, thanks to research led by Cardiff University.

Study finds gut microbiome can control antitumor immune function in liver

May 24, 2018
Scientists have found a connection between bacteria in the gut and antitumor immune responses in the liver. Their study, published May 25 in Science, was led by researchers in the Center for Cancer Research (CCR) at the National ...

Low-fat diet tied to better breast cancer survival

May 24, 2018
(HealthDay)—Breast cancer patients who adopted a low-fat diet were more likely to survive for at least a decade after diagnosis, compared to patients who ate fattier fare, new research shows.

A cascade of immune processes offers insights to triple-negative breast cancer

May 24, 2018
Cancer is crafty. To survive and thrive, tumors find a way of thwarting our body's natural systems.

By forming clots in tumors, immune cell aids lung cancer's spread

May 24, 2018
University of North Carolina Lineberger Comprehensive Cancer Center researchers have found that by helping to form clots within tumors, immune cells that flock to a particular type of lung cancer are actually building a foundation ...

Cancer cells co-opt pain-sensing 'wasabi receptor' to survive oxidative stress

May 24, 2018
Anyone who's taken a bite of a sandwich with too much spicy mustard or a piece of sushi with too much wasabi can attest to the tear-inducing sensation these condiments can cause. These loud warnings to the nervous system ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.