Deep-brain exploration with nanomaterial—A less invasive way to stimulate the mouse brain with light

February 8, 2018, RIKEN
Near-infrared (NIR) light applied above the skull can easily pass through brain tissue with minimal scattering and reach deep structures. Up-conversion nanoparticles (UCNPs; blue) in the tissue can absorb this light and locally emit visible light sufficient to activate light-sensitive channels expressed in nearby neurons. Credit: RIKEN

Studying deep brain tissues noninvasively is difficult. Now, RIKEN scientists in Japan have developed a way to send light deep into the brain without invasive optical fibers. The method uses infrared light outside the head to activate upconversion nanoparticles (UCNPs). When these nanoparticles absorb near-infrared laser light, they emit visible photons to deep areas in the brain, allowing remote optogenetic stimulation or inhibition of neurons in the brain.

You can't peer very far down into a well or below the surface of the ocean before things go dark—light does not penetrate to such depths. Though the brain is far from bottomless, neuroscientists face the same lack of light when they try to study living deep-brain structures. This is especially frustrating given that optogenetics, a method for manipulating genetically tagged brain cells with light, has exploded in popularity over the past decade. "Optogenetics has been a revolutionary tool for controlling in the lab, and hopefully someday in the clinic," says Thomas McHugh, research group leader at the RIKEN Brain Science Institute in Japan. "Unfortunately, delivering light within brain tissue requires invasive optical fibers."

McHugh and colleagues now have a solution for sending light to new depths in the brain. As they report in Science on February 9, upconversion (UCNPs) can act as a conduit for laser light delivered from outside the skull. These nanoparticles absorb near-infrared laser light and in turn emit visible photons to areas that are inaccessible to standard optogenetics. This method was used to turn on neurons in various brain areas as well as silence seizure activity and evoke memory cells. "Nanoparticles effectively extend the reach of our lasers, enabling the 'remote' delivery of light and potentially leading to non-invasive therapies," says McHugh.

In optogenetics, blue-green light is used to turn neurons on or off via light-responsive ion channels. Light at these wavelengths, however, scatters strongly and is at the other end of the spectrum from the near-infrared light that can penetrate deeper into brain tissue. UCNPs composed of elements from the lanthanide family can act as a bridge. Their 'optogenetic actuation' turns low-energy near-infrared laser light into blue or green wavelengths for control of specifically labeled cells. Though such bursts of light deliver considerable energy to a small area, temperature increases or cellular damage were not observed.

Non-invasive activation of neurons in the VTA, a reward center of the mouse brain. The blue-light sensitive ChR2 channel (green) was expressed on both sides of the VTA, however UCNPs (blue) were only injected on the right. NIR light was applied to both sides, however it only activated the expression of the activity-induced cFos gene (red) on the side with the nanoparticles. Credit: RIKEN

In addition to activating neurons, UCNPs can also be used for inhibition, for example to quell experimental seizures in mice. The researchers injected nanoparticles tuned to emit green light into the hippocampus and then energized them with laser pulses at the surface of the skull. Hyperexcitable neurons were effectively silenced in these mice. In another brain area called the medial septum, nanoparticle-emitted light contributed to synchronizing neurons in an important brain wave called the theta cycle. And in mice with learned fear memories, the freezing behavior associated with these experiences was evoked by blue light-emitting UCNPs, also in the hippocampus. Neural activation, inhibition, and memory recall effects were only observed in mice that received nanoparticle-mediated optogenetic stimulation, not in control animals that received laser light without a UCNP injection.

Memory recall in mice also persisted in tests two weeks later. This indicates that the UCNPs remained at the injection site, which was confirmed through microscopy of the brains. "The nanoparticles appear to be quite stable and biocompatible, making them viable for long-term use. Plus, the low dispersion means we can target neurons very specifically," says McHugh. The nanoparticles described in this study are compatible with the various -activated channels currently in use in the optogenetics field and can be employed for neural activation or inhibition in many deep brain structures. Nanoparticles could become a minimally invasive alternative to optical fibers for stimulation, and their chronic interaction with is part of ongoing research.

This study was a collaboration between scientists at the RIKEN Brain Science Institute, the National University of Singapore, the University of Tokyo, Johns Hopkins University and Keio University.

Explore further: Scientists use magnetic fields to remotely stimulate brain—and control body movements

More information: Chen el al., "Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics," Science (2018). science.sciencemag.org/cgi/doi … 1126/science.aaq1144

Related Stories

Scientists use magnetic fields to remotely stimulate brain—and control body movements

August 16, 2017
Scientists have used magnetism to activate tiny groups of cells in the brain, inducing bodily movements that include running, rotating and losing control of the extremities—an achievement that could lead to advances in ...

Stopping the brain's memory circuits from overheating

May 3, 2017
The highly interconnected zones of the brain's hippocampus mediate spatial and episodic memory, but to keep memories organized they need the right balance of exciting and calming input. A part of the hippocampus called CA2 ...

A new adjustable optical microprobe for the analysis and control of deep brain regions

June 21, 2017
Researchers from the IIT- Istituto Italiano di Tecnologia in Lecce, Italy, and the Harvard Medical School in Boston have developed a new optical microprobe able to control brain electrical activity by projecting light on ...

Recommended for you

Brain response study upends thinking about why practice speeds up motor reaction times

August 16, 2018
Researchers in the Department of Physical Medicine and Rehabilitation at Johns Hopkins Medicine report that a computerized study of 36 healthy adult volunteers asked to repeat the same movement over and over became significantly ...

Newly identified role for inhibition in cerebellar plasticity and behavior

August 16, 2018
Almost everyone is familiar with the unique mixture of surprise and confusion that occurs after making a mistake during an everyday movement. It's a fairly startling experience—stumbling on a step or accidentally missing ...

Men and women show surprising differences in seeing motion

August 16, 2018
Researchers reporting in the journal Current Biology on August 16 have found an unexpected difference between men and women. On average, their studies show, men pick up on visual motion significantly faster than women do.

How people use, and lose, preexisting biases to make decisions

August 16, 2018
From love and politics to health and finances, humans can sometimes make decisions that appear irrational, or dictated by an existing bias or belief. But a new study from Columbia University neuroscientists uncovers a surprisingly ...

Working memory might be more flexible than previously thought

August 16, 2018
Breaking with the long-held idea that working memory has fixed limits, a new study by researchers at Uppsala University and New York University suggests that these limits adapt themselves to the task that one is performing. ...

Self-control develops gradually in adolescent brain

August 15, 2018
Different parts of the brain mature at different times, which may help to explain impulsive behaviors in adolescence, suggest researchers from Penn State and the University of Pittsburgh.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.