Experimental therapy restores nerve insulation damaged by disease

February 12, 2018, Cincinnati Children's Hospital Medical Center
This image from a paper in Nature Medicine shows how inhibiting an enzyme called HDAC3 in mice increases the expansion of Schwann cells (green). Schwann cells form a protective insulating layer called the myelin sheath around the nerves. Blocking HDAC3 increases the production of myelin proteins, shown in red. Scientists from Cincinnati Children's tested an experimental molecular therapy in mice that restored nerve insulation and improved limb function following nerve injury. Credit: Cincinnati Children's

When the body attacks its own healthy tissues in an autoimmune disease, peripheral nerve damage handicaps people and causes persistent neuropathic pain when insulation on healing nerves doesn't fully regenerate.

Unfortunately, there are no effective ways to treat the condition. Now scientists at Cincinnati Children's Hospital Medical Center describe in Nature Medicine an experimental molecular therapy that restores insulation on peripheral nerves in mice, improves limb function, and results in less observable discomfort.

Published Feb. 12, the study's principal investigator is Q. Richard Lu, PhD, director of the Cincinnati Children's Brain Tumor Center

To identify possible therapies, the international team of investigators performed small-molecule epigenetic screening for compounds that inhibit enzymes involved in on chromosomes. These changes alter how gene activity in cells is regulated. The authors identified small molecular inhibitors already used to treat certain cancers and tested them in experimental treatments on mice with injured sciatic nerves.

The molecular compounds target the enzyme HDAC3 (histone deacetylase 3). Study data show that HDAC3 inhibits regenerating insulation on recovering peripheral nerves.

"Remarkably, temporary inhibition of HDAC3 robustly accelerated the formation of myelin that helps insulate peripheral nerves," Lu says. "This promoted functional recovery in the animals after ."

Restoring Signal Relays

The peripheral nervous system relays signals from the brain and (the central nervous system) to limbs and organs. HDAC3 is an enzyme found in humans and mice. Its usual job in peripheral nerve formation is to act as a molecular brake on the production of the myelin coating by Schwann cells.

After injury, HDAC3 initiates epigenetic changes to chromosomes and gene regulation that excessively restrict myelin regeneration. This results in nerve insulation that is too thin or not totally formed, blocking or slowing signals between the spinal cord, extremities and organs.

Timing is Crucial

Researchers carefully timed their targeted treatments when inhibiting HDAC3, treating the mouse models of nerve injury only during a critical phase of regeneration. This resulted in the right amount of re-myelination to restore normal function in the animals.

Getting the timing right on transient treatment is critical, Lu says. Researchers show that blocking HDAC3 for too long allows myelin to overgrow and cause excessively thick insulation. This also can lead to functional problems in extremities, according to study data.

From Science to Medicine

Translating data in the current study to clinical application in human patients will require extensive additional research, Lu says. Now that the prospective therapy has been successfully tested in mice, researchers are exploring additional research in animal models that more closely mimic the repair of injured peripheral nerves in people. This includes looking specifically at some demyelinating diseases that affect the central nervous system, such as multiple sclerosis.

Lu said this work will allow scientists to replicate and verify their findings in mice and other laboratory models. They also will be able to test possible dosing levels. If results are positive, Lu said researchers could pursue possible Phase I clinical trials in patients having deficient myelin in their peripheral and central nervous systems.

Explore further: MicroRNA treatment restores nerve insulation, limb function in mice with multiple sclerosis

More information: A histone deacetylase 3–dependent pathway delimits peripheral myelin growth and functional regeneration, Nature Medicine, nature.com/articles/doi:10.1038/nm.4483

Related Stories

MicroRNA treatment restores nerve insulation, limb function in mice with multiple sclerosis

March 27, 2017
Scientists partially re-insulated ravaged nerves in mouse models of multiple sclerosis (MS) and restored limb mobility by treating the animals with a small non-coding RNA called a microRNA.

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

HIPPO's molecular balancing act helps nerves not short circuit

April 26, 2017
Scientists write in Nature Communications it may be possible to therapeutically fine tune a constantly shifting balance of molecular signals to ensure the body's peripheral nerves are properly insulated and functioning normally. ...

Glial cells assist in the repair of injured nerves

January 28, 2013
When a nerve is damaged, glial cells produce the protein neuregulin1 and thereby promote the regeneration of nerve tissue.

Race to nerve regeneration: faster is better

October 3, 2011
A team of researchers led by Clifford Woolf and Chi Ma, at Children's Hospital Boston and Harvard Medical School, Boston, has identified a way to accelerate the regeneration of injured peripheral nerves in mice such that ...

Recommended for you

Neural inflammation plays critical role in stress-induced depression

July 19, 2018
A group of Japanese researchers has discovered that neural inflammation caused by the innate immune system plays an unexpectedly important role in stress-induced depression. This insight could potentially lead to the development ...

Paralyzed mice with spinal cord injury made to walk again

July 19, 2018
Most people with spinal cord injury are paralyzed from the injury site down, even when the cord isn't completely severed. Why don't the spared portions of the spinal cord keep working? Researchers at Boston Children's Hospital ...

Understanding the neuroscience of binge drinking

July 19, 2018
A new study from researchers at Columbia University Irving Medical Center found that binge drinking impairs working memory in the adolescent brain. The study, in mice, explains why teenagers who binge drink are 15 times more ...

Scientists uncover the role of a protein in production and survival of myelin-forming cells

July 19, 2018
The nervous system is a complex organ that relies on a variety of biological players to ensure daily function of the human body. Myelin—a membrane produced by specialized glial cells—plays a critical role in protecting ...

Neurons can carry more than one signal at a time

July 18, 2018
Back in the early days of telecommunications, engineers devised a clever way to send multiple telephone calls through a single wire at the same time. Called time-division multiplexing, this technique rapidly switches between ...

Researchers solve mystery of how ALL enters the central nervous system

July 18, 2018
A deadly feature of acute lymphoblastic leukemia (ALL) is its invasion of the central nervous system.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.