Experimental therapy restores nerve insulation damaged by disease

February 12, 2018, Cincinnati Children's Hospital Medical Center
This image from a paper in Nature Medicine shows how inhibiting an enzyme called HDAC3 in mice increases the expansion of Schwann cells (green). Schwann cells form a protective insulating layer called the myelin sheath around the nerves. Blocking HDAC3 increases the production of myelin proteins, shown in red. Scientists from Cincinnati Children's tested an experimental molecular therapy in mice that restored nerve insulation and improved limb function following nerve injury. Credit: Cincinnati Children's

When the body attacks its own healthy tissues in an autoimmune disease, peripheral nerve damage handicaps people and causes persistent neuropathic pain when insulation on healing nerves doesn't fully regenerate.

Unfortunately, there are no effective ways to treat the condition. Now scientists at Cincinnati Children's Hospital Medical Center describe in Nature Medicine an experimental molecular therapy that restores insulation on peripheral nerves in mice, improves limb function, and results in less observable discomfort.

Published Feb. 12, the study's principal investigator is Q. Richard Lu, PhD, director of the Cincinnati Children's Brain Tumor Center

To identify possible therapies, the international team of investigators performed small-molecule epigenetic screening for compounds that inhibit enzymes involved in on chromosomes. These changes alter how gene activity in cells is regulated. The authors identified small molecular inhibitors already used to treat certain cancers and tested them in experimental treatments on mice with injured sciatic nerves.

The molecular compounds target the enzyme HDAC3 (histone deacetylase 3). Study data show that HDAC3 inhibits regenerating insulation on recovering peripheral nerves.

"Remarkably, temporary inhibition of HDAC3 robustly accelerated the formation of myelin that helps insulate peripheral nerves," Lu says. "This promoted functional recovery in the animals after ."

Restoring Signal Relays

The peripheral nervous system relays signals from the brain and (the central nervous system) to limbs and organs. HDAC3 is an enzyme found in humans and mice. Its usual job in peripheral nerve formation is to act as a molecular brake on the production of the myelin coating by Schwann cells.

After injury, HDAC3 initiates epigenetic changes to chromosomes and gene regulation that excessively restrict myelin regeneration. This results in nerve insulation that is too thin or not totally formed, blocking or slowing signals between the spinal cord, extremities and organs.

Timing is Crucial

Researchers carefully timed their targeted treatments when inhibiting HDAC3, treating the mouse models of nerve injury only during a critical phase of regeneration. This resulted in the right amount of re-myelination to restore normal function in the animals.

Getting the timing right on transient treatment is critical, Lu says. Researchers show that blocking HDAC3 for too long allows myelin to overgrow and cause excessively thick insulation. This also can lead to functional problems in extremities, according to study data.

From Science to Medicine

Translating data in the current study to clinical application in human patients will require extensive additional research, Lu says. Now that the prospective therapy has been successfully tested in mice, researchers are exploring additional research in animal models that more closely mimic the repair of injured peripheral nerves in people. This includes looking specifically at some demyelinating diseases that affect the central nervous system, such as multiple sclerosis.

Lu said this work will allow scientists to replicate and verify their findings in mice and other laboratory models. They also will be able to test possible dosing levels. If results are positive, Lu said researchers could pursue possible Phase I clinical trials in patients having deficient myelin in their peripheral and central nervous systems.

Explore further: MicroRNA treatment restores nerve insulation, limb function in mice with multiple sclerosis

More information: A histone deacetylase 3–dependent pathway delimits peripheral myelin growth and functional regeneration, Nature Medicine, nature.com/articles/doi:10.1038/nm.4483

Related Stories

MicroRNA treatment restores nerve insulation, limb function in mice with multiple sclerosis

March 27, 2017
Scientists partially re-insulated ravaged nerves in mouse models of multiple sclerosis (MS) and restored limb mobility by treating the animals with a small non-coding RNA called a microRNA.

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

HIPPO's molecular balancing act helps nerves not short circuit

April 26, 2017
Scientists write in Nature Communications it may be possible to therapeutically fine tune a constantly shifting balance of molecular signals to ensure the body's peripheral nerves are properly insulated and functioning normally. ...

Glial cells assist in the repair of injured nerves

January 28, 2013
When a nerve is damaged, glial cells produce the protein neuregulin1 and thereby promote the regeneration of nerve tissue.

Race to nerve regeneration: faster is better

October 3, 2011
A team of researchers led by Clifford Woolf and Chi Ma, at Children's Hospital Boston and Harvard Medical School, Boston, has identified a way to accelerate the regeneration of injured peripheral nerves in mice such that ...

Recommended for you

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers find the cause of and cure for brain injury associated with gut condition

December 13, 2018
Using a mouse model of necrotizing enterocolitis (NEC)—a potentially fatal condition that causes a premature infant's gut to suddenly die—researchers at Johns Hopkins say they have uncovered the molecular causes of the ...

How the brain tells you to scratch that itch

December 13, 2018
It's a maddening cycle that has affected us all: it starts with an itch that triggers scratching, but scratching only makes the itchiness worse. Now, researchers have revealed the brain mechanism driving this uncontrollable ...

Researchers identify pathway that drives sustained pain following injury

December 13, 2018
A toddler puts her hand on a hot stove and swiftly withdraws it. Alas, it's too late—the child's finger has sustained a minor burn. To soothe the pain, she puts the burned finger in her mouth.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.