Preventing fibrosis

February 9, 2018, Cardiff University
Preventing fibrosis
Credit: Cardiff University

Researchers at Cardiff University and the Wales Kidney Research Unit have discovered a potential new method for preventing the process that causes scar formation in organs.

The new research, in collaboration with the University of Exeter and the Cleveland Clinic Lerner Research Institute, involves altering the cells responsible for wound healing and tissue repair and could lead to treatments that would prevent and even reverse organ fibrosis – a major cause of illness and death around the world.

Fibrosis is the formation of excess fibrous connective tissue in an organ as part of a reparative or reactive process. This biological process can lead to permanent organ damage and chronic disease. Fibrotic diseases include cardiac and pulmonary fibrosis, atherosclerosis, asthma, cirrhosis and scleroderma.

During their laboratory tests, the team discovered that a protein previously thought to simply break down sugar chains can be used to make alterations to the RNA of cells responsible for and , radically affecting their function.

Dr. Soma Meran, from Cardiff University's School of Medicine and the Wales Kidney Research Unit, said: "We were amazed to discover that the protein Hyaluronidase-2 can bind to RNA in a cell and alter its activity. In the case of the cells responsible for fibrosis and , we can potentially use this technique to stop them from producing scar tissue. This opens up exciting new research avenues in the study of ."

The team's particular interests at the Wales Kidney Research Unit relate to the prevention and/or reversal of , which cannot currently be reversed and consumes approximately 3% of the NHS budget. Many of these patients ultimately require dialysis or transplantation, and these treatments are associated with significant risks and complications.

The next phase of the research will be to further investigate the structure of Hyaluronidase-2 to identify what makes it travel to a cell nucleus and influence genetic material. In the future the team hopes to develop synthetic proteins that mimic the beneficial effects of Hyaluronidase-2 for development in therapeutics.

Explore further: Scientists make a major breakthrough to treat fibrotic diseases that cause organ failure

More information: Adam C. Midgley et al. Nuclear hyaluronidase 2 drives alternative splicing ofCD44pre-mRNA to determine profibrotic or antifibrotic cell phenotype, Science Signaling (2017). DOI: 10.1126/scisignal.aao1822

Related Stories

Scientists make a major breakthrough to treat fibrotic diseases that cause organ failure

November 13, 2017
Researchers from Duke-NUS Medical School (Duke-NUS) and the National Heart Centre Singapore (NHCS) have discovered that a critical protein, known as interleukin 11 (IL11) is responsible for fibrosis and causes organ damage. ...

A promising target for kidney fibrosis

April 20, 2017
When the kidneys - vital organs for filtering the body's entire blood supply - become injured, it can set in motion an unfortunate chain of events that leads to a decline in health. Sometimes, in response to chronic injury, ...

Cigarette smoke exposure increases scar tissue in the kidney and heart, study finds

December 2, 2016
Smoking may lead to fibrosis in the heart and kidneys and can worsen existing kidney disease, according to a new study. Fibrosis is tissue scarring that can impair the normal function of vital organs. The research team suggests ...

New tools to combat kidney fibrosis

October 16, 2017
Interstitial fibrosis – excessive tissue scarring – contributes to chronic kidney disease, which is increasing in prevalence in the United States.

Fighting liver fibrosis, the wound that never heals

December 8, 2015
Chronic damage to the liver eventually creates a wound that never heals. This condition, called fibrosis, gradually replaces normal liver cells—which detoxify the food and liquid we consume—with more and more scar tissue ...

Identifying the cellular origin of fibrosis

December 2, 2014
Researchers from Brigham and Women's Hospital (BWH) have identified what they believe to be the cells responsible for fibrosis, the buildup of scar tissue. Fibrotic diseases, such as chronic kidney disease and failure, lung ...

Recommended for you

Clues found to early lung transplant failure

May 21, 2018
Among organ transplant patients, those receiving new lungs face a higher rate of organ failure and death compared with people undergoing heart, kidney and liver transplants. One of the culprits is inflammation that damages ...

Helping preterm infants grow bigger kidneys would prevent kidney disease later in life

May 21, 2018
Nephrons are the microscopic blood-filtering units inside our kidneys that convert waste products into urine, regulate our electrolyte levels and our blood pressure.

How to ethically conduct clinical research during public health emergencies

May 21, 2018
Following the 2014-2015 Ebola outbreak in West Africa, the U.S. National Academy of Sciences, Engineering and Medicine established a committee to assess the clinical trials conducted in Guinea, Sierra Leone and Liberia. In ...

Anxious women may want to keep an eye on their bone health

May 18, 2018
(HealthDay)—As if older women didn't already worry enough about their bone health, new research suggests that anxiety may up their risk for fractures.

New strategy to cure chronic hepatitis B infection

May 18, 2018
Scientists from Karolinska Institutet and Hannover Medical School have published two studies that provide insights into how the immune system responds and helps to clear a hepatitis B infection after treatment interruption. ...

Blood type affects severity of diarrhea caused by E. coli

May 17, 2018
A new study shows that a kind of E. coli most associated with "travelers' diarrhea" and children in underdeveloped areas of the world causes more severe disease in people with blood type A.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.