Gene therapy researchers find viral barcode to cross the blood-brain barrier

February 9, 2018, University of North Carolina at Chapel Hill School of Medicine
This image shows AAV therapy affecting pyramidal neurons in the hippocampus. Credit: Blake Albright, Asokan Lab

Gene therapies promise to revolutionize the treatment of many diseases, including neurological diseases such as ALS. But the small viruses that deliver therapeutic genes can have adverse side effects at high doses. UNC School of Medicine researchers have now found a structure on these viruses that makes them better at crossing from the bloodstream into the brain – a key factor for administering gene therapies at lower doses for treating brain and spinal disorders.

"This structural 'footprint' we found seems to help these viruses get efficiently into the brain, which informs the design of potentially safer brain-targeted gene therapies," said study senior author Aravind Asokan, Ph.D., associate professor of genetics.

The study, published in Molecular Therapy, examined adeno-associated viruses (AAVs), the most commonly used vectors for delivering gene therapies. The natural forms of these small viruses normally infect people without causing disease. For gene therapies, scientists remove most of the AAV genome, replace it with therapeutic genetic cargo, and inject trillions of copies into the patient.

In principle, scientists can modify AAVs to infect some cell types more than others to deliver their therapeutic payloads where they are most needed. However, most AAVs cannot easily cross from the bloodstream into the brain. Like most other viruses, they tend to be blocked by the cells that tightly line brain capillaries to form the so-called blood-brain .

"To achieve therapeutic effects in the brain, AAVs sometimes have to be given in high doses, which raises the possibility of dose-dependent toxicity," said first author Blake Albright, a graduate research assistant at UNC.

For the study, Albright, Asokan and colleagues tried to isolate the features that enable AAVs to cross the blood-brain barrier more easily. They started with two known AAVs, one that doesn't efficiently cross the blood-brain barrier, and one that does. They created a small library of new variants of these AAVs by swapping short stretches of DNA from one to the other. They then tested these for their ability to cross the blood-brain barrier in mice.

In this way they isolated a closely spaced set of just eight amino acids on the viral coating that confers the ability to cross the blood-brain barrier efficiently. "Grafting that structural footprint onto another AAV strain enables it to cross into the brain much more easily," Albright said.

The finding suggests that other AAVs used for a gene targeting the brain or spinal cord might be improved by having the same or a similar set of amino acids. It would cross the blood-brain barrier more efficiently, and thus in principle would require a smaller dose to achieve therapeutic effects in the brain.

A smaller AAV dose would in itself mean a smaller chance of . But the UNC scientists found another potential safety benefit. Compared to their parental strains, AAV variants containing the key set of amino acids were less likely to get into other, non-brain cells, including liver cells. Transient liver toxicity is a significant concern in when high doses are required.

"We also found that our AAV variants containing this key amino acid footprint preferentially get into neurons rather than other brain cell types," Asokan said. "This could be particularly useful for some gene therapies that target the brain."

Gene therapies against are under investigation in clinical and preclinical trials, and include therapies for ALS, Huntington's disease, Spinal Muscular Atrophy, Friedrich's ataxia, and other disorders.

The UNC researchers are now trying to determine the precise molecular details of how the set of AAV allows the viruses to cross the blood- barrier. They are also studying how structures that enable crossing might differ from one animal species to another.

Explore further: Faults in the blood-brain barrier implicated in dementia

Related Stories

Faults in the blood-brain barrier implicated in dementia

February 6, 2018
California based researchers have found that damage to cells known as pericytes, which surround small blood vessels in the brain, may trigger a chain of events that results in brain degeneration. The findings are published ...

Novel viral vectors deliver useful cargo to neurons throughout the brain and body

June 26, 2017
Viruses have evolved to be highly effective vehicles for delivering genes into cells. Seeking to take advantage of these traits, scientists can reprogram viruses to function as vectors, capable of carrying their genetic cargo ...

New model may help science overcome the brain's fortress-like barrier

September 19, 2017
Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

Building a better blood-brain barrier model

June 6, 2017
Delivering drugs to the brain is no easy task. The blood-brain barrier -a protective sheath of tissue that shields the brain from harmful chemicals and invaders - cannot be penetrated by most therapeutics that are injected ...

Recommended for you

Researchers discover cell structure that plays a role in epigenetic inheritance

May 22, 2018
We know a lot about how genes get passed from parent to child, but scientists are still unraveling how so-called epigenetic information—instructions about which genes to turn on and off—is conveyed from generation to ...

Fruit flies: 'Living test tubes' to rapidly screen potential disease-causing human gene

May 22, 2018
It all began with one young patient; a 7-year old boy who was born without a thymus, an important organ of the immune system, and without functional immune cells. The boy also presented with cardiac and skeletal defects, ...

Advance genetics study identifies virulent strain of tuberculosis

May 22, 2018
LSTM's Dr. Maxine Caws is co-lead investigator on an advanced genetics study published in Nature Genetics, which has shown that a virulent strain of tuberculosis (TB) has adapted to transmit among young adults in Ho Chi Minh ...

Cell types underlying schizophrenia identified

May 22, 2018
Scientists at Karolinska Institutet in Sweden and University of North Carolina have identified the cell types underlying schizophrenia in a new study published in Nature Genetics. The findings offer a roadmap for the development ...

New brain development disorder identified by scientists

May 22, 2018
Researchers have identified a new inherited neurodevelopmental disease that causes slow growth, seizures and learning difficulties in humans.

New data changes the way scientists explain how cancer tumors develop

May 21, 2018
A collaborative research team has uncovered new information that more accurately explains how cancerous tumors grow within the body. This study is currently available in Nature Genetics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.