New method maps the dopamine system in Parkinson's patients

February 14, 2018, Karolinska Institutet
Immunohistochemistry for alpha-synuclein showing positive staining (brown) of an intraneural Lewy-body in the Substantia nigra in Parkinson's disease. Credit: Wikipedia

With the aid of a PET camera, researchers from Karolinska Institutet in Sweden have developed a new method for investigating the dopamine system in the brains of patients suffering from Parkinson's disease. The method measures levels of a protein called dopamine transporter and could lead to improved diagnosis of Parkinson's disease and the development of new treatments. The study is published in the scientific journal Movement Disorders.

Dopamine is a substance produced in the brain and is responsible for controlling our movements. The cells that produce are located in an area known as the brainstem, from where dopamine is then secreted into the basal ganglia, an area of the brain that plays an important function in regulating our movements.

In Parkinson's disease, dopamine cells degenerate and their loss is responsible for the motor symptoms that characterise the disorder, such as shaking, slowness of movement and difficulty in walking.

Using a special brain imaging technique known as Positron Emission Tomography (PET), a group of researchers at Karolinska Institutet have measured the levels of the protein DAT that regulates the levels of dopamine in the brain. DAT functions as a biomarker for dopamine cells and is present on the surface of the dopamine cells in the cell bodies, on the and on the nerve endings. By measuring where DAT is found, researchers have been able to map the presence of dopamine cells.

The study was based on 20 patients suffering from mild Parkinsonism and an equal number of healthy individuals. The results showed significantly lower amounts of DAT in in the Parkinson's patients than those not suffering from the disease. However, the amount of DAT remained relatively intact in cell bodies and nerve fibres.

"These results suggest that in the early stages of the disease dopamine are still viable and that, given the correct treatment, it should be possible to restore their function," says Andrea Varrone, senior lecturer in nuclear medicine at Karolinska Institutet's Department of Clinical Neuroscience who led the study.

"The method we have developed is likely to be able to assist in the diagnosis of Parkinson's disease at an earlier stage and predict the development of the disease. DAT can also be used as a biomarker in clinical trials of new medicines and treatment strategies," he continues.

Future studies will examine patients with more advanced Parkinson's, in order to gain a greater understanding of the links between DAT and clinical variables such as and the various stages of the disease.

Explore further: Conversion of brain cells offers hope for Parkinson's patients

More information: Patrik Fazio et al. Nigrostriatal dopamine transporter availability in early Parkinson's disease, Movement Disorders (2018). DOI: 10.1002/mds.27316

Related Stories

Conversion of brain cells offers hope for Parkinson's patients

April 11, 2017
Researchers at Karolinska Institutet have made significant progress in the search for new treatments for Parkinson's disease. By manipulating the gene expression of non-neuronal cells in the brain, they were able to produce ...

Restless sleep may be an early sign of Parkinson's disease

December 6, 2017
Restless sleep could be a sign of a disorder associated with diseases of the brain. Researchers from Aarhus University conducted a case-control study on the condition of the dopamine-producing nerve cells in the brain and ...

Scientific discovery may change treatment of Parkinson's disease

March 22, 2017
When monitoring Parkinson's disease, SPECT imaging of the brain is used for acquiring information on the dopamine activity. A new study conducted in Turku, Finland, shows that the dopamine activity observed in SPECT imaging ...

Impulsivity in Parkinson's disease

October 30, 2017
Dopamine medications are effective in treating the motor symptoms of Parkinson's disease (PD), but dopamine agonists can trigger impulsive-compulsive behaviors (ICBs), such as compulsive gambling, eating or shopping, in a ...

Neurotrophic factor GDNF is an important regulator of dopamine neurons in the brain

February 16, 2017
New research results are expanding our understanding of the physiological role of the glial cell line-derived neurotrophic factor GDNF in the function of the brain's dopamine systems. In an article recently published in the ...

Mechanisms behind sensory deficits in Parkinson's disease

May 18, 2017
Although Parkinson's disease is often associated with motor symptoms such as stiffness, poor balance and trembling, the first symptoms are often sensory and include a reduced sense of touch and smell. In a study on mice, ...

Recommended for you

New method maps the dopamine system in Parkinson's patients

February 14, 2018
With the aid of a PET camera, researchers from Karolinska Institutet in Sweden have developed a new method for investigating the dopamine system in the brains of patients suffering from Parkinson's disease. The method measures ...

Mechanism behind common Parkinson's mutation discovered

February 5, 2018
Northwestern Medicine investigators have discovered how a gene mutation results in buildup of a toxic compound known to cause Parkinson's disease symptoms, defining for the first time the mechanism underlying that aspect ...

Tactic for controlling motor symptoms of advanced Parkinson's disease

January 25, 2018
Standard drug treatment for Parkinson's disease can over time induce motor complications that reduce the effectiveness of restoring mobility. These complications include abnormal involuntary movements known as dyskinesias. ...

A new therapeutic avenue for Parkinson's disease

January 23, 2018
Systemic clearing of senescent astrocytes prevents Parkinson's neuropathology and associated symptoms in a mouse model of sporadic disease, the type implicated in 95% of human cases. Publishing in Cell Reports, researchers ...

Investigators eye new target for treating movement disorders

January 19, 2018
Blocking a nerve-cell receptor in part of the brain that coordinates movement could improve the treatment of Parkinson's disease, dyskinesia and other movement disorders, researchers at Vanderbilt University have reported.

Parkinson's disease 'jerking' side effect detected by algorithm

January 8, 2018
A mathematical algorithm that can reliably detect dyskinesia, the side effect from Parkinson's treatment that causes involuntary jerking movements and muscle spasms, could hold the key to improving treatment and for patients ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.