Scientists discover off-switch for 'molecular machine' active in many diseases

February 6, 2018, University of Queensland
Researchers have discovered how a molecular 'machine' -- that drives inflammation in a range of diseases -- turns off in healthy cells. Credit: Kate Schroder, The University of Queensland

A discovery by Queensland scientists could be the key to stopping damage caused by uncontrolled inflammation in a range of common diseases including liver disease, Alzheimer's and gout.

University of Queensland researchers have uncovered how an process automatically switches off in healthy cells, and are now investigating ways to stop it manually when it goes awry.

UQ's Institute for Molecular Bioscience (IMB) researcher Associate Professor Kate Schroder said this inflammation pathway drove many different diseases.

"Now that we understand how this pathway naturally turns off in health, we can investigate why it doesn't turn off in disease—so it's very exciting," Dr Schroder said.

Her work at IMB's Centre for Inflammation and Disease Research focuses on inflammasomes, which are machine-like protein complexes at the heart of inflammation and disease.

"These complexes form when an infection, injury or other disturbance is detected by the immune system, and they send messages to immune cells to tell them to respond," Dr Schroder said.

"If the disturbance can't be cleared, such as in the case of amyloid plaques in Alzheimer's, these molecular machines continue to fire, resulting in neurodegenerative damage from the sustained inflammation."

Kate Schroder is Deputy Director, IMB Centre for Inflammation and Disease Research at the University of Queensland. Credit: The University of Queensland

Dr Schroder's team, led by Dr Dave Boucher, discovered that inflammasomes normally work with an in-built timer switch, to ensure they only fire for a specific length of time once triggered.

"The inflammasome initiates the by activating a protein that functions like a pair of scissors, and cuts itself and other proteins," Dr Schroder said.

"What we've found is that after a period of time this protein cuts itself a second time to turn off the pathway, so if we can tweak this system we may be able to turn it off manually in ."

Dr Schroder's laboratory has begun studying the inflammasome in fatty , a rapidly growing health issue due to the increasing global incidence of obesity and diabetes.

"In some patients with this condition the liver becomes increasingly fatty and inflamed, and this can lead to cirrhosis - which can require - or even liver cancer."

Compounds to block have been developed by IMB researchers including Dr Schroder, and are being commercialised by start-up drug development company Inflazome Ltd.

Explore further: The role of monosodium urate crystals in gout

Related Stories

The role of monosodium urate crystals in gout

September 20, 2017
An attack of gout is said to be like your joint catching fire, and someone slamming it with a hammer to put out the flames. Now A*STAR researchers have identified how the build-up of monosodium urate (MSU) crystals in the ...

Of mice and cheeseburgers: Experimental drug reverses obesity-related liver disease

August 3, 2017
A drug developed at the University of Rochester Medical Center protected mice from one of the many ills of our cheeseburger and milkshake-laden Western diet—non-alcoholic fatty liver disease.

Effect of gut bacteria on specific immune cells underlies persistent liver inflammation

January 16, 2018
Persistent liver inflammation in sufferers of chronic viral hepatitis is likely caused by interactions between pro-inflammatory immune cells in the liver and products from gut bacteria, according to new work involving A*STAR ...

Scientists make surprising finding in stroke research

March 16, 2015
Scientists at The University of Manchester have made an important new discovery about the brain's immune system that could lead to potential new treatments for stroke and other related conditions.

Unveiling the biology behind nonalcoholic fatty liver disease

January 17, 2017
EPFL scientists have discovered a new biological mechanism behind nonalcoholic fatty liver disease.

New compound discovered in fight against inflammatory disease

September 22, 2017
A 10-year study by University of Manchester scientists for a new chemical compound that is able to block a key component in inflammatory illness has ended in success.

Recommended for you

A Trojan Horse delivery for treating a rare, potentially deadly, blood-clotting disorder

September 21, 2018
In proof-of-concept experiments, University of Alabama at Birmingham researchers have highlighted a potential therapy for a rare but potentially deadly blood-clotting disorder, TTP. The researchers deliver this therapeutic ...

Study shows surprise low-level ozone impact on asthma patients

September 21, 2018
A new study led by UNC School of Medicine researchers indicates that ozone has a greater impact on asthma patients than previously thought. The study, published in the Journal of Allergy and Clinical Immunology, recruited ...

Cancer immunotherapy might benefit from previously overlooked immune players

September 20, 2018
Cancer immunotherapy—efforts to boost a patient's own immune system, allowing it to better fight cancer cells on its own—has shown great promise for some previously intractable cancers. Yet immunotherapy doesn't work ...

Gut fungus exacerbates asthma in antibiotic-treated mice

September 20, 2018
A non-pathogenic fungus can expand in the intestines of antibiotic-treated mice and enhance the severity of allergic airways disease, according to a study published September 20 in the open-access journal PLOS Pathogens by ...

Paracetamol use in infancy is linked to increased risk of asthma in some teenagers

September 17, 2018
Children who take paracetamol during their first two years of life may be at a higher risk of developing asthma by the age of 18, especially if they have a particular genetic makeup, according to new research presented at ...

Cord blood clue to respiratory diseases

September 15, 2018
New research has found children born in the last three months of the year in Melbourne may have a greater risk of developing respiratory diseases such as asthma.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.