Scientists discover off-switch for 'molecular machine' active in many diseases

February 6, 2018, University of Queensland
Researchers have discovered how a molecular 'machine' -- that drives inflammation in a range of diseases -- turns off in healthy cells. Credit: Kate Schroder, The University of Queensland

A discovery by Queensland scientists could be the key to stopping damage caused by uncontrolled inflammation in a range of common diseases including liver disease, Alzheimer's and gout.

University of Queensland researchers have uncovered how an process automatically switches off in healthy cells, and are now investigating ways to stop it manually when it goes awry.

UQ's Institute for Molecular Bioscience (IMB) researcher Associate Professor Kate Schroder said this inflammation pathway drove many different diseases.

"Now that we understand how this pathway naturally turns off in health, we can investigate why it doesn't turn off in disease—so it's very exciting," Dr Schroder said.

Her work at IMB's Centre for Inflammation and Disease Research focuses on inflammasomes, which are machine-like protein complexes at the heart of inflammation and disease.

"These complexes form when an infection, injury or other disturbance is detected by the immune system, and they send messages to immune cells to tell them to respond," Dr Schroder said.

"If the disturbance can't be cleared, such as in the case of amyloid plaques in Alzheimer's, these molecular machines continue to fire, resulting in neurodegenerative damage from the sustained inflammation."

Kate Schroder is Deputy Director, IMB Centre for Inflammation and Disease Research at the University of Queensland. Credit: The University of Queensland

Dr Schroder's team, led by Dr Dave Boucher, discovered that inflammasomes normally work with an in-built timer switch, to ensure they only fire for a specific length of time once triggered.

"The inflammasome initiates the by activating a protein that functions like a pair of scissors, and cuts itself and other proteins," Dr Schroder said.

"What we've found is that after a period of time this protein cuts itself a second time to turn off the pathway, so if we can tweak this system we may be able to turn it off manually in ."

Dr Schroder's laboratory has begun studying the inflammasome in fatty , a rapidly growing health issue due to the increasing global incidence of obesity and diabetes.

"In some patients with this condition the liver becomes increasingly fatty and inflamed, and this can lead to cirrhosis - which can require - or even liver cancer."

Compounds to block have been developed by IMB researchers including Dr Schroder, and are being commercialised by start-up drug development company Inflazome Ltd.

Explore further: The role of monosodium urate crystals in gout

Related Stories

The role of monosodium urate crystals in gout

September 20, 2017
An attack of gout is said to be like your joint catching fire, and someone slamming it with a hammer to put out the flames. Now A*STAR researchers have identified how the build-up of monosodium urate (MSU) crystals in the ...

Of mice and cheeseburgers: Experimental drug reverses obesity-related liver disease

August 3, 2017
A drug developed at the University of Rochester Medical Center protected mice from one of the many ills of our cheeseburger and milkshake-laden Western diet—non-alcoholic fatty liver disease.

Effect of gut bacteria on specific immune cells underlies persistent liver inflammation

January 16, 2018
Persistent liver inflammation in sufferers of chronic viral hepatitis is likely caused by interactions between pro-inflammatory immune cells in the liver and products from gut bacteria, according to new work involving A*STAR ...

Scientists make surprising finding in stroke research

March 16, 2015
Scientists at The University of Manchester have made an important new discovery about the brain's immune system that could lead to potential new treatments for stroke and other related conditions.

Unveiling the biology behind nonalcoholic fatty liver disease

January 17, 2017
EPFL scientists have discovered a new biological mechanism behind nonalcoholic fatty liver disease.

New compound discovered in fight against inflammatory disease

September 22, 2017
A 10-year study by University of Manchester scientists for a new chemical compound that is able to block a key component in inflammatory illness has ended in success.

Recommended for you

Thymic tuft cells play key role in preventing autoimmunity, mouse experiments show

July 18, 2018
UC San Francisco researchers were recently surprised to discover fully formed gut and skin cells in the thymus, a lemon-sized organ that sits in front of the heart and is responsible for training the T cells of the immune ...

Autism risk determined by health of mom's gut, research reveals

July 18, 2018
The risk of developing autism-spectrum disorders is determined by the mother's microbiome—the collection of microorganisms that naturally live inside us—during pregnancy, new research from the University of Virginia School ...

New findings suggest allergic responses may protect against skin cancer

July 17, 2018
The components of the immune system that trigger allergic reactions may also help protect the skin against cancer, suggest new findings.

The immune system: T cells are built for speed

July 17, 2018
Without T cells, we could not survive. They are a key component of the immune system and have highly sensitive receptors on their surface that can detect pathogens. The exact way that these receptors are distributed over ...

Broadly acting antibodies found in plasma of Ebola survivors

July 17, 2018
Recent Ebola virus disease (EVD) outbreaks, including the 2013-2016 epidemic that ravaged West Africa and the 2018 outbreak in the Democratic Republic of the Congo, highlight the need for licensed treatments for this often-deadly ...

How protein fragments could help to tackle the cause of hay fever

July 16, 2018
Imperial researchers are looking to protein fragments to help people build up resistance to grass pollen.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.