Researchers rescue embryos from brain defects by re-engineering cellular voltage patterns

March 8, 2018, Tufts University
Normal frog embryo brain pattern development (left); frog embryo brain pattern when exposed to nicotine (center); frog embryo brain pattern rescued by HCN2 in the presence of nicotine (right) Credit: Mike Levin (Tufts University Professor of Biology and director of Allen Discovery Center), Vaibhav Pai (Tufts University Research Scientist)

Tufts University biologists have demonstrated for the first time that electrical patterns in the developing embryo can be predicted, mapped, and manipulated to prevent defects caused by harmful substances such as nicotine. The research, published today in Nature Communications, suggests that targeting bioelectric states may be a new treatment modality for regenerative repair in brain development and disease, and that computational methods can be used to find effective repair strategies.

In a developing embryo, the outer membrane of each cell contains protein channels that transport negative and positive ions, generating voltage gradients across the cell wall. Groups of cells create patterns of membrane voltage that precede and control the expression of genes and the morphological changes occurring over the course of development.

"Studies focusing on gene expression, growth factors, and molecular pathways have provided us with a better but still incomplete understanding of how cells arrange themselves into complex organ systems in a growing embryo," said Professor Michael Levin, Ph.D., corresponding author of the study and director of the Allen Discovery Center at Tufts University. "We are now beginning to see how electrical patterns in the embryo are guiding large scale patterns of tissues, organs, and limbs. If we can decode this electrical communication between cells, then we might be able to use it to normalize development or support regeneration in the treatment of disease or injury."

To help decipher that code, Levin and lead author Vaibhav Pai, Ph.D., a Research Scientist II at the Allen Discovery Center at Tufts, explored whether it was possible to use a computational model to predict the bioelectrical patterns that occur in normal and nicotine-exposed , and then use the model to identify reagents that might restore the normal even in the presence of the teratogen (a class of molecules that induce birth defects). In humans, nicotine has been linked to prenatal morbidity, sudden infant death, attention deficit hypersensitivity disorder (ADHD), and other deficits in cognitive function, learning, and memory.

Earlier studies suggested that these defects may be a result of nicotine depolarizing cells in the embryo by inducing acetylcholine receptors to pump in positively charged sodium and potassium ions. Levin and Pai hypothesized that disruption of the normal bioelectric prepattern that drives brain patterning could be the underlying cause for these defects, and that restoring this pattern might rescue those defects.

Pai worked with Alexis Pietak, Ph.D., a primary investigator at the Allen Discovery Center at Tufts, who developed a powerful computational simulation platform - called the BioElectric Tissue Simulation Engine (BETSE) - to create a dynamic map of voltage signatures in a developing frog embryo. The simulation engine (available for free download) was built on a biologically realistic model of ion concentrations and fluxes and parameters of ion channel behaviors derived from molecular studies. The BETSE model accurately replicated the distinct pattern of membrane voltage from the normal embryonic brain development, and also explained the "flattened" (erased) electrical pattern observed to result from nicotine exposure.

The Tufts researchers were then able to use BETSE to explore the effect of various reagents on the embryo's voltage map. One reagent in particular, the hyperpolarization-activated cyclic nucleotide gated channel (HCN2), when added to the cells in the model, selectively enhanced hyperpolarization (large internal negative charge) in areas where it was diminished by nicotine. The effect—akin to dialing up the contrast in a photo editor—effectively restored the normal electrical pattern.

Remarkably, expressing HCN2 in live embryos rescued them from the effects of nicotine, restoring a normal bio-electric pattern, brain morphology, markers of gene expression, and near normal learning capacity in the grown tadpole.

"This is an important step providing a realistic model that bridges the molecular, cellular, bio-electrical, and anatomical scales of the developing embryo. Adding the bioelectrical component was critical to making a search for therapeutic strategies more tractable," said Levin, the Vannevar Bush professor of biology in the School of Arts & Sciences at Tufts.

Explore further: Brain guides body much sooner than previously believed

More information: Vaibhav P. Pai et al, HCN2 Rescues brain defects by enforcing endogenous voltage pre-patterns, Nature Communications (2018). DOI: 10.1038/s41467-018-03334-5

Related Stories

Brain guides body much sooner than previously believed

September 25, 2017
The brain plays an active and essential role much earlier than previously thought, according to new research from Tufts University scientists which shows that long before movement or other behaviors occur, the brain of an ...

Bioelectricity plays key role in brain development and repair

March 10, 2015
Research reported today by Tufts University biologists shows for the first time that bioelectrical signals among cells control and instruct embryonic brain development and manipulating these signals can repair genetic defects ...

Faulty bioelectric signal responsible for facial defects caused by rare genetic disorder

February 10, 2016
Tufts University biologists have discovered the bioelectric mechanism by which the rare genetic disorder Andersen-Tawil syndrome (ATS) causes facial abnormalities, a finding that could lead to preventive measures and treatments ...

Researchers prevent, normalize tumors using light to control cell electric signals

March 16, 2016
Tufts University biologists using a frog model have demonstrated for the first time that it is possible to prevent tumors from forming and normalize tumors after they have formed by using light to control electrical signaling ...

Recommended for you

LincRNAs identified in human fat tissue

June 21, 2018
A large team of researchers from the U.S. and China has succeeded in identifying a number of RNA fragments found in human fat tissue. In their paper published in the journal Science Translational Medicine the group describes ...

Scientists solve the case of the missing subplate, with wide implications for brain science

June 21, 2018
The disappearance of an entire brain region should be cause for concern. Yet, for decades scientists have calmly maintained that one brain area, the subplate, simply vanishes during the course of human development. Recently, ...

Key molecule of aging discovered

June 21, 2018
Every cell and every organism ages sooner or later. But why is this so? Scientists at the German Cancer Research Center in Heidelberg have now discovered for the first time a protein that represents a central switching point ...

Compound made inside human body stops viruses from replicating

June 20, 2018
The newest antiviral drugs could take advantage of a compound made not by humans, but inside them. A team of researchers has identified the mode of action of viperin, a naturally occurring enzyme in humans and other mammals ...

Research reveals zero proof probiotics can ease your anxiety

June 20, 2018
If you're expecting probiotics to reduce your anxiety, it might be time to put down that yogurt spoon—or supplement bottle—and call a professional instead.

Long-term estrogen therapy changes microbial activity in the gut, study finds

June 20, 2018
Long-term therapy with estrogen and bazedoxifene alters the microbial composition and activity in the gut, affecting how estrogen is metabolized, a new study in mice found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.