Researchers pinpoint gene responsible for neurodevelopmental disorders, including autism

March 5, 2018, McMaster University
Karun Singh, study co-author and researcher with McMaster's Stem Cell and Cancer Research Institute. Credit: McMaster University

A study led by researchers at McMaster University has pinpointed a gene that is responsible for neurodevelopmental disorders, including autism.

Researchers found alterations of the gene thousand and one amino-acid kinase 2, known as TAOK2, plays a direct role in these disorders. This is the first comprehensive study that supports previous research suggesting the involvement of this gene.

The study was published in Molecular Psychiatry.

"Our studies reveal that in complex brain disorders that have a loss of many genes, a single deleted gene is sufficient to cause symptoms for the patients," said Karun Singh, study co-author and researcher with McMaster's Stem Cell and Cancer Research Institute.

"This is exciting because it focuses our research effort on the individual gene, saving us time and money as it will speed up the development of targeted therapeutics to this gene alone."

Many are caused by large missing pieces of genetic material in a person's genome that contain several , termed a 'microdeletion'. Accurately diagnosing a gene microdeletion helps doctors to predict patient outcome and to determine if a new treatment is available.

The researchers used genetically engineered models and computer algorithms to study a human genome, which allowed them to pinpoint the single gene in question.

"Our next step is to screen candidate drugs that correct the cognitive brain deficits caused by genetic mutations in TAOK2, and identify candidates for pilot clinical trials," said Singh, who also holds the David Braley Chair in Human Stem Cell Research and is an assistant professor in biochemistry and biomedical sciences at McMaster.

The paper complements a study led by Singh on gene microdeletion published in American Journal of Human Genetics in early February.

"The investment into the Braley Chair for Dr. Singh and his development of key collaborations is building in multiple directions beyond what we initially imagined," said Mick Bhatia, director of McMaster's Stem Cell and Cancer Research Institute. "The combination of patient specific genetics and stem cell technologies is likely to be transformative in the near term for brain ."

Explore further: Researchers identify gene largely accounting for 15q13.3 microdeletion syndrome

More information: Melanie Richter et al. Altered TAOK2 activity causes autism-related neurodevelopmental and cognitive abnormalities through RhoA signaling, Molecular Psychiatry (2018). DOI: 10.1038/s41380-018-0025-5

Related Stories

Researchers identify gene largely accounting for 15q13.3 microdeletion syndrome

February 2, 2018
Researchers are closer to solving the puzzle of a complex neurological condition called 15q13.3 microdeletion syndrome. Individuals with this condition are missing a small piece of chromosome 15 that usually contains six ...

Scientists discover autism gene slows down brain cell communication

November 8, 2016
Scientists at McMaster University's Stem Cell and Cancer Research Institute in collaboration with Sick Children's Hospital have discovered an important 'on' button in DIXDC1 protein that instructs brain cells to form mature ...

New genes discovered regulating brain metastases in lung cancer

August 8, 2017
Research from McMaster University has identified new regulators of brain metastases in patients with lung cancer.

Innovative genetic and cellular techniques help identify multiple disease targets

November 12, 2017
Research released today highlights advances in the use of CRISPR-Cas9 and human induced pluripotent stem cell technologies to identify novel therapeutic targets for neurological disorders such as schizophrenia and addiction. ...

The coming of age of gene therapy: A review of the past and path forward

January 11, 2018
After three decades of hopes tempered by setbacks, gene therapy—the process of treating a disease by modifying a person's DNA—is no longer the future of medicine, but is part of the present-day clinical treatment toolkit. ...

Study sheds light on genetic overlap between major psychiatric disorders

February 8, 2018
Most medical disorders have well-defined physical characteristics seen in tissues, organs and bodily fluids. Psychiatric disorders, in contrast, are not defined by such pathology, but rather by behavior.

Recommended for you

Targeting the engine room of the cancer cell

June 18, 2018
Researchers at Columbia University Irving Medical Center (CUIMC) have developed a highly innovative computational framework that can support personalized cancer treatment by matching individual tumors with the drugs or drug ...

Scientists learn more about how gene linked to autism affects brain

June 18, 2018
New preclinical research shows a gene already linked to a subset of people with autism spectrum disorder is critical to healthy neuronal connections in the developing brain, and its loss can harm those connections to help ...

161 genetic factors for myopia identified

June 15, 2018
The international Consortium for Refractive Error and Myopia (CREAM) recently published the largest-ever genetic study of myopia in Nature Genetics. Researchers from the Gutenberg Health Study at the Medical Center of Johannes ...

Genetic disorder identified in children

June 15, 2018
A genetic defect affecting normal development in children has been identified by a study involving University of Queensland researcher and alumnus Professor David Coman.

Scientists discover biomarker for flu susceptibility

June 13, 2018
Researchers at the Stanford University School of Medicine have found a way to predict whether someone exposed to the flu virus is likely to become ill.

Brain secrets that flow in our blood

June 13, 2018
Our blood can be used to uncover genetic secrets inside the brain, according to University of Queensland research.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.