Researchers find protein that marks difference between cancer and non-cancer cells

March 8, 2018, University of Alberta Faculty of Medicine & Dentistry
UAlberta biochemistry professor Michael Overduin is part of a research team that discovered a modified protein that is overused by cancerous cells to effectively prevent healthy ones from sorting material in the way they were designed to. Credit: Ross Neitz

A discovery sheds light on how cancerous cells differ from healthy ones, and could lead to the development of new strategies for therapeutic intervention for difficult-to-treat cancers in the future.

An international team of investigators found a "stop sign"—a modified protein researchers named a PIP-stop—inside cells that are overused by that effectively prevents healthy ones from sorting material in the way they were designed to.

"We have discovered that breast cancer, leukemia, lymphoma and have too many PIP-stops. This would upset , and opens up a new avenue for developing drugs that block PIP-stop formation by kinase enzymes," said Michael Overduin, a University of Alberta cancer researcher and professor of biochemistry, who led the research project.

The team named the modification a PIP-stop because it stops proteins from interacting with lipid molecules called PIP.

Before making their discovery, the researchers first solved the 3-D structure of a sorting nexin protein, which is key to sorting proteins to their proper locations within the cell. Powerful magnets in the U.K. and in the National High Field Nuclear Magnetic Resonance Centre (NANUC), Canada's national magnet lab based in Edmonton, were then used to detect signals from within individual atoms within the .

By focusing on the protein structure, the team was able to discover the PIP-stop and see how it blocked the protein's function. The PIP-stop is a phosphate which is added to the that binds the PIP lipid, and normally controls how proteins attach to membranes.

Samples from cancer patients have too many PIP-stops, which could lead to the unregulated growth seen in tumour cells. Similar PIP-stops were found to be overused in a large number of other proteins involved in other cancer types, where they could also influence tumour growth.

"Our goal now is to design inhibitors for the overactive kinases that create PIP-stops, and to use this information to design drug molecules that block the progression of cancers, particularly those which lack effective treatments," said Overduin.

Explore further: Researchers identify a crucial protein that commands a key communications hub determining cell growth

More information: Marc Lenoir et al, Phosphorylation of conserved phosphoinositide binding pocket regulates sorting nexin membrane targeting, Nature Communications (2018). DOI: 10.1038/s41467-018-03370-1

Related Stories

Researchers identify a crucial protein that commands a key communications hub determining cell growth

January 3, 2018
National University of Singapore biologists have identified a crucial protein that commands a key communications hub which determines cell growth.

Study discovers proteins which suppress the growth of breast cancer tumors

June 12, 2017
Researchers at the University of Birmingham have found that a type of protein could hold the secret to suppressing the growth of breast cancer tumours.

New kinase detection method helps identify targets for developing cancer drugs

September 21, 2017
Purdue University researchers have developed a high-throughput method for matching kinases to the proteins they phosphorylate, speeding the ability to identify multiple potential cancer drug targets.

Map of substrate-kinase interactions may lead to more effective cancer drugs

March 27, 2012
(Medical Xpress) -- Later-stage cancers thrive by finding detours around roadblocks that cancer drugs put in their path, but a Purdue University biochemist is creating maps that will help drugmakers close more routes and ...

New bowel cancer drug target discovered

October 17, 2017
Researchers at the Francis Crick Institute have discovered a new drug target for bowel cancer that is specific to tumour cells and therefore less toxic than conventional therapies.

Recommended for you

Researchers find adult stem cell characteristics in aggressive cancers from different tissues

September 19, 2018
UCLA researchers have discovered genetic similarities between the adult stem cells responsible for maintaining and repairing epithelial tissues—which line all of the organs and cavities inside the body—and the cells that ...

Ketogenic diet reduces body fat in women with ovarian or endometrial cancer

September 19, 2018
Women with ovarian or endometrial cancer who followed the ketogenic diet for 12 weeks lost more body fat and had lower insulin levels compared to those who followed the low-fat diet recommended by the American Cancer Society, ...

Eating foods with low nutritional quality ratings linked to cancer risk in large European cohort

September 18, 2018
The consumption of foods with higher scores on the British Food Standards Agency nutrient profiling system (FSAm-NPS), reflecting a lower nutritional quality, is associated with an increased risk of developing cancer, according ...

Could the zika virus fight the brain cancer that killed john McCain?

September 18, 2018
(HealthDay)—Preliminary research in mice suggests that the Zika virus might be turned from foe into friend—enlisted to curb deadly glioblastoma brain tumors.

CRISPR screen reveals new targets in more than half of all squamous cell carcinomas

September 18, 2018
A little p63 goes a long way in embryonic development—and flaws in p63 can result in birth defects like cleft palette, fused fingers or even missing limbs. But once this early work is done, p63 goes silent, sitting quietly ...

Enlarged genotype-phenotype correlation for a three-base pair deletion in neurofibromatosis type 1

September 18, 2018
International collaborative research led by Ludwine Messiaen, Ph.D., shows that while a three-base pair, in-frame deletion called p.Met992del in the NF1 gene has a mild phenotype for people with the genetic disorder neurofibromatosis ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.