Scientists develop new tool to study nicotine receptors

March 27, 2018 by Anna Williams, Northwestern University
Nicotine, alternate molecular skeletal 2D rendering showing the 3D conformation of its ring at lowest energy in actual space. Credit: Public Domain

A team of scientists has developed a new technique to better understand the effects of nicotine on the brain. In a study published in Nature Methods, the investigators described the creation of a novel light-activated nicotine compound, which will allow scientists to better study receptors that play a key role in nicotine addiction.

"Investigators are now able to study the neurotransmitter receptor for nicotine in ways not previously possible," said co-corresponding author Ryan M. Drenan, PhD, associate professor of Pharmacology. "Scientists interested in studying nicotine dependence or acetylcholine—the neurotransmitter that normally binds to 'nicotine receptors'—now have a fantastic tool that, when properly employed, may enable us to uncover fundamental principles of cholinergic transmission."

Matthew C. Arvin, PharmD, a graduate student in Drenan's laboratory, was a co-first author of the study, which was conducted in collaboration with investigators at the Howard Hughes Medical Institute's Janelia Research Campus.

Photoactivatable versions of drugs, which can be activated by brief flashes of light, are an important tool used in pharmacological research to study processes in cells and to model behavior. Until recently, however, scientists lacked the ability to develop compounds for many  drugs, including a class with a so-called "tertiary nitrogen," which includes nicotine.

Credit: Northwestern University

In the current study, the team of scientists developed a new chemical method for preparing derivatives of such previously "uncageable" drugs—and applied the strategy to nicotine. After developing a photoactivatable nicotine, called PA-Nic, they utilized the compound to study .

"We used the probe to reveal new details about how chronic nicotine exposure changes the activity and location of these receptors, paving the way for a new approach to studying dependence," Drenan said.

The new strategy will be essential for studies of acetylcholine transmission and , but the approach could also be applied to other drugs that have a tertiary nitrogen, according to the authors. For example, the study demonstrates the creation of photoactivatable versions of the opioid fentanyl and the antidepressant escitalopram, among others.

"This could lead to novel research in many aspects of neurobiology that impact human health, including mood disorders or the opioid epidemic," Drenan said.

Explore further: Running away from addiction: How exercise aids smoking cessation

More information: Sambashiva Banala et al. Photoactivatable drugs for nicotinic optopharmacology, Nature Methods (2018). DOI: 10.1038/nmeth.4637

Related Stories

Running away from addiction: How exercise aids smoking cessation

December 20, 2017
New research in mice sheds light on the mechanism underlining exercise's protective effect against nicotine dependence and withdrawal.

Tiny worms may offer new clues about why it's so hard to quit smoking

November 7, 2017
Researchers at the University of Michigan Life Sciences Institute found that a previously dismissed genetic mechanism may contribute to nicotine dependence, and to the withdrawal effects that can make quitting smoking so ...

New discoveries on the connection between nicotine and type 2 diabetes

March 8, 2016
Researchers at Lund University in Sweden have made two new discoveries with regard to the beta cells' ability to release insulin. The findings can also provide a possible explanation as to why smokers have an increased risk ...

Nicotine vaccine delays the drug's effects in mice

March 9, 2016
Many people who smoke want to quit, but the urge to light up is often irresistible. An effective vaccine to help people kick the habit once and for all has been elusive. But now, scientists report in ACS' Journal of Medicinal ...

Nicotine withdrawal traced to very specific group of brain cells

November 14, 2013
Nicotine withdrawal might take over your body, but it doesn't take over your brain. The symptoms of nicotine withdrawal are driven by a very specific group of neurons within a very specific brain region, according to a report ...

Recommended for you

New inflammation inhibitor discovered

November 16, 2018
A multidisciplinary team of researchers led from Karolinska Institutet in Sweden have developed an anti-inflammatory drug molecule with a new mechanism of action. By inhibiting a certain protein, the researchers were able ...

Gut hormone and brown fat interact to tell the brain it's time to stop eating

November 15, 2018
Researchers from Germany and Finland have shown that so-called "brown fat" interacts with the gut hormone secretin in mice to relay nutritional signals about fullness to the brain during a meal. The study, appearing November ...

Brain, muscle cells found lurking in kidney organoids grown in lab

November 15, 2018
Scientists hoping to develop better treatments for kidney disease have turned their attention to growing clusters of kidney cells in the lab. One day, so-called organoids—grown from human stem cells—may help repair damaged ...

How the Tasmanian devil inspired researchers to create 'safe cell' therapies

November 15, 2018
A contagious facial cancer that has ravaged Tasmanian devils in southern Australia isn't the first place one would look to find the key to advancing cell therapies in humans.

Researchers discover important connection between cells in the liver

November 15, 2018
University of Minnesota Medical School researchers have made a discovery which could lead to a new way of thinking about how disease pathogenesis in the liver is regulated, which is important for understanding the condition ...

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.