Bad antibodies made good: The immune system's secret weapon uncovered

April 12, 2018, Garvan Institute of Medical Research
Credit: CC0 Public Domain

The 'bad apples' of the immune system are also its secret weapon, according to major Australian research published today in the world-leading journal Science.

In a world first, scientists from Sydney's Garvan Institute of Medical Research have revealed how a population of 'bad' antibodies in the immune system - which are usually 'silenced' because they can harm the - can provide crucial protection against invading microbes. The research was carried out in mice.

The 'bad' antibodies are known to react against the body's own tissues and can cause autoimmune disease. For this reason, it was once thought that they were discarded by the immune system or that they were made inactive in the long term. However, the new findings show for the first time that 'bad' antibodies go through a rapid 'redemption' process and are activated when the body is faced with a disease threat that other antibodies cannot tackle.

As a result, the 'redeemed' antibodies no longer threaten the body, but instead become powerful weapons to fight disease - and particularly diseases that evade the immune system by disguising themselves to look like normal body tissue.

Professor Chris Goodnow, who co-led the new research with A/Prof Daniel Christ (both Immunology Division, Garvan), says the new findings will fundamentally change thinking about how the immune system protects us.

"We once thought that harmful antibodies were discarded by the body - like a few bad apples in the barrel - and no one had any idea that you could start with a 'bad' antibody and make it good.

Professor Chris Goodnow, Assistant Professor Daniel Christ and Dr. Deborah Burnett discuss their new research, published in Science, which describes a new way that the immune system protects against disease. Credit: Garvan Institute of Medical Research
"From these new findings, we now know that every antibody is precious when it comes to fighting invading microbes - and this new understanding means that 'bad' antibodies are a valuable resource for the development of vaccines for HIV, and for other diseases that go undercover in the body."

This study was made possible by the generosity of The Bill and Patricia Ritchie Foundation, and through funding from the National Health and Medical Research Council (Australia).

Carrying out the immune system's toughest task

The new research appears to solve an enduring mystery that has puzzled scientists for decades: How does the immune system attack invading microbes that look almost identical to the body's own molecules, without mounting an attack on the body at the same time?

Campylobacter, HIV and others are particularly problematic targets for the immune system because they have evolved to appear almost identical to the body's own molecules; they are 'wolves in sheep's clothing'. This makes it difficult for the immune system to attack them, because it systematically avoids using antibodies that can attack 'self'.

To understand how the immune system recognises these 'wolves in sheep's clothing', scientists from the Garvan Institute zeroed in on a mysterious army of immune cells in the bloodstream.

'Bad' antibodies are hiding inside silenced B cells

The silenced cell army contains millions of known as B cells - which produce antibodies to fight diseases. Unlike other B cells, though, the cells of this army pose a danger to the body. This is because they can make 'bad' antibodies, which can attack 'self' and cause autoimmune disease. For this reason, they are kept in a long-term silenced state (known as anergy).

Professor Chris Goodnow discovered the silenced cells 30 years ago - and has been working to understand their function ever since.

"The big question about these cells has been why they are there at all, and in such large numbers," says Prof Goodnow. "Why does the body keep these cells, whose antibodies pose a genuine risk to health, instead of destroying them completely, as we once thought?"

The new findings appear to answer that question, showing that selected cells in the army can be reawakened to fight invaders - but only once their 'bad' antibodies are made good.

"We've shown that these silenced cells do have a crucial purpose, says Deborah Burnett, a PhD student at Garvan whose work forms the basis of the study. "Far from 'clogging up' the immune system for no good reason, they're providing weapons—bad apples made good—to fight off invaders whose 'wolf in sheep's clothing tactics make it almost impossible for the other cells of the immune system to fight them."

Three tiny DNA changes turn bad into brilliant

Working with a sophisticated preclinical mouse model, which was developed at Garvan by Prof Rob Brink (Immunology Division) and his team, the researchers showed that the silenced cells can produce antibodies when they encounter an invader that appears highly similar to 'self'.

Crucially, before the cells attack, the antibodies they make are first redeemed through tiny alterations to their DNA sequence. This ensures the antibody that each cell makes no longer attacks 'self', but rapidly becomes a 5000 times more potent weapon against the invading foreigner.

Remarkably, in the model system tested, only three DNA changes were needed to transform antibodies from dangerous cells to effective weapons against disease: a first change to stop the antibody from binding to 'self', and a further two changes to increase their ability to specifically bind the invader.

At the atomic level, a dimple makes the difference

In experiments conducted at the Australian Synchrotron, the research team showed how the three DNA changes rearrange the tips of the antibody in defined ways, so that it becomes much better at recognising the foreign molecule and worse at recognising 'self'. In particular, the redeemed antibody fits neatly around a nanoscale 'dimple' that is present on the foreign molecule but is absent on self.

"This research has taken us on an exciting journey," says A/Prof Christ. "Not only have we uncovered a new kind of immunity, we've been able to confirm precisely how a bad antibody can be made good.

"Crucially, these redeemed antibodies are by no means a fall-back option. In fact, our findings show the opposite - that antibodies made by tweaking 'bad' can be even better than those developed through established pathways."

Towards better vaccines

Our findings indicate that theres a whole class of B cells out there - the silenced B cells - that might be accessible for vaccine development, and that we have so far largely ignored, A/Prof Christ says.

Dr Burnett adds, "We're hoping that, instead of ignoring this population of silenced B cells, researchers will in the future consider targeting these when they're developing vaccines, particularly against targets such as HIV, which disguise themselves as 'self'."

Explore further: Die another day: How the immune system keeps 'traitor cells' in lockdown

More information: "Germinal center antibody mutation trajectories are determined by rapid self/foreign discrimination" Science (2018). science.sciencemag.org/cgi/doi … 1126/science.aao3859

Related Stories

Die another day: How the immune system keeps 'traitor cells' in lockdown

November 10, 2016
New Australian research has shown how the immune system avoids attacking its own tissues with antibodies - whilst still maintaining a strong defence against invaders. The findings, from the Garvan Institute of Medical Research ...

Researchers find key mechanism to control antibody production

April 28, 2017
A research team from iMM Lisboa led by Luís Graça has found a cellular mechanism that underlies the development of autoimmune diseases.

Sugar governs how antibodies work in the immune system

October 6, 2015
Antibodies protect the body against diseases – but can also harm their own organism if the reactions are misdirected. Researchers from the University of Zurich have now discovered that a particular sugar in the antibodies ...

Preventing autoimmune disease after a viral infection

October 2, 2017
The key weapon against viruses and bacteria that invade the body is production of antibodies, which act like guided missiles to attack and neutralize pathogens.

Getting antibodies into shape to fight cancer

December 11, 2014
Scientists at the University of Southampton have found that the precise shape of an antibody makes a big difference to how it can stimulate the body's immune system to fight cancer, paving the way for much more effective ...

Cancer immunotherapy may work in unexpected way

May 18, 2017
Antibodies to the proteins PD-1 and PD-L1 have been shown to fight cancer by unleashing the body's T cells, a type of immune cell. Now, researchers at the Stanford University School of Medicine have shown that the therapy ...

Recommended for you

Some brain tumors may respond to immunotherapy, new study suggests

December 10, 2018
Immunotherapy has proved effective in treating a number of cancers, but brain tumors have remained stubbornly resistant. Now, a new study suggests that a slow-growing brain tumor arising in patients affected by neurofibromatosis ...

A code for reprogramming immune sentinels

December 10, 2018
For the first time, a research team at Lund University in Sweden has successfully reprogrammed mouse and human skin cells into immune cells called dendritic cells. The process is quick and effective, representing a pioneering ...

Major breakthrough in quest for cancer vaccine

December 6, 2018
The idea of a cancer vaccine is something researchers have been working on for over 50 years, but until recently they were never able to prove exactly how such a vaccine would work.

Newly identified T cells could play a role in cancer and other diseases

December 6, 2018
Researchers from the UCLA Jonsson Comprehensive Cancer Center and the La Jolla Institute for Immunology have identified a new type of T cell called a phospholipid-reactive T cell that is able to recognize phospholipids, the ...

Classifying brain microglia: Which are good and which are bad?

December 6, 2018
Microglia are known to be important to brain function. The immune cells have been found to protect the brain from injury and infection and are critical during brain development, helping circuits wire properly. They also seem ...

Memory B cells in the lung may be important for more effective influenza vaccinations

December 5, 2018
Seasonal influenza vaccines are typically less than 50 percent effective, according to Centers for Disease Control and Prevention studies. Research at the University of Alabama at Birmingham, published this week in Nature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.