Discovery sheds new light on how neurodegenerative diseases might occur

April 10, 2018, University of Leicester
Neuronal synapse. Credit: University of Leicester

Researchers from the University of Leicester have shed new light on how neurons in the brain communicate with one another. This could potentially help in our understanding of how and why a range of neurodegenerative diseases occur.

The team, led by Dr Joern Steinert from the MRC Toxicology Unit at the University of Leicester, has found that the important molecule present in the whole animal kingdom—including the human body—called , plays a vital role in regulating the functions of not only periphery but also in the , helping to decipher the 'mosaic' of knowledge about how our brain communicates.

Nitric oxide is a signalling molecule involved in many physiological and pathological processes which helps in dilating blood vessels, raising blood supply and lowering blood pressure.

The new research, which is funded by the Medical Research Council and published in the journal PLOS Biology, has found that nitric oxide also regulates the functions of neurons via a modulation of a signalling step at a synapse - the point where two neurons connect and neurotransmitters are released.

This regulation changes the position of the —called complexin—within a synapse and regulates the amount of the neurotransmitter which is released.

"We showed for the first time that this complexin protein can be regulated or modified so that it is now able to adjust the of a synapse and eventually the neuron," says Dr Steinert. "This would have bigger impacts on the global function of the brain which has to be constantly regulated and adjusted to changes in demand. Implications are also related to neurological disease, in which this exact signalling might go wrong and leaves the neuron unable to function.

"This research can also help to better understand neurological conditions, such as seen in many . If the pathways which we characterised go wrong, it can easily disrupt whole brain function and leading to neuronal death."

The team investigated the neural pathway in the fruit fly Drosophila melanogaster. They predominately detected changes in neuronal function—or the electrical firing of a single neuron.

The researchers then used genetic methods to express certain proteins of interest at in specific neurons, using various methods to visualise proteins and molecules within neurons in order to detect changes in their position and function within a neuron.

Explore further: New technology will create brain wiring diagrams

More information: Susan W. Robinson et al, Nitric oxide-mediated posttranslational modifications control neurotransmitter release by modulating complexin farnesylation and enhancing its clamping ability, PLOS Biology (2018). DOI: 10.1371/journal.pbio.2003611

Related Stories

New technology will create brain wiring diagrams

January 9, 2018
The human brain is composed of billions of neurons wired together in intricate webs and communicating through electrical pulses and chemical signals. Although neuroscientists have made progress in understanding the brain's ...

Pathway in neurons may contribute to neurodegenerative disease

October 4, 2017
An injury pathway in the neurons of fruit flies may cause the loss of synapses in diseases such as Alzheimer's and ALS, according to University of Michigan researchers.

Molecule may help maintain brain's synaptic balance

June 13, 2017
Many neurological diseases are malfunctions of synapses, or the points of contact between neurons that allow senses and other information to pass from finger to brain. In the brain, there is a careful balance between the ...

Identification of the action mechanism of a protein impacting neural circuit development

May 30, 2016
Research by Dr. Shernaz Bamji, from the University of British Columbia, uncovers the mechanism of action of an enzyme called DHHC9 in the normal development and function of neural networks in the brain. Mutations in DHHC9 ...

Key synapse formation regulator identified

August 22, 2017
Professor Ko Jae-won at Korea Advanced Institute of Science and Technology (KAIST) has conducted a study of the three-dimensional structure of proteins that regulate neuronal cell connections for the first time, and has identified ...

Recommended for you

Neural inflammation plays critical role in stress-induced depression

July 19, 2018
A group of Japanese researchers has discovered that neural inflammation caused by the innate immune system plays an unexpectedly important role in stress-induced depression. This insight could potentially lead to the development ...

Paralyzed mice with spinal cord injury made to walk again

July 19, 2018
Most people with spinal cord injury are paralyzed from the injury site down, even when the cord isn't completely severed. Why don't the spared portions of the spinal cord keep working? Researchers at Boston Children's Hospital ...

Understanding the neuroscience of binge drinking

July 19, 2018
A new study from researchers at Columbia University Irving Medical Center found that binge drinking impairs working memory in the adolescent brain. The study, in mice, explains why teenagers who binge drink are 15 times more ...

Scientists uncover the role of a protein in production and survival of myelin-forming cells

July 19, 2018
The nervous system is a complex organ that relies on a variety of biological players to ensure daily function of the human body. Myelin—a membrane produced by specialized glial cells—plays a critical role in protecting ...

Neurons can carry more than one signal at a time

July 18, 2018
Back in the early days of telecommunications, engineers devised a clever way to send multiple telephone calls through a single wire at the same time. Called time-division multiplexing, this technique rapidly switches between ...

Researchers solve mystery of how ALL enters the central nervous system

July 18, 2018
A deadly feature of acute lymphoblastic leukemia (ALL) is its invasion of the central nervous system.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.