Don't forget the 'epi' in genetics research, scientist says

April 5, 2018, Johns Hopkins University School of Medicine
A depiction of the double helical structure of DNA. Its four coding units (A, T, C, G) are color-coded in pink, orange, purple and yellow. Credit: NHGRI

In a review article published April 5 in the New England Journal of Medicine, scientist Andrew Feinberg, M.D., calls for more integration between two fields of DNA-based research: genetics and epigenetics.

Most people are familiar with genetics, a field of research that focuses on the precise sequence of chemicals that form the ladder-like structure of DNA. However, epigenetics is not as well known among the public. It's the study of how information is added onto or influences the read-out of genes and, Feinberg says, is not combined often enough with genetics research to understand human disease.

Feinberg, who directs the Center for Epigenetics in the Johns Hopkins Institute for Basic Biomedical Sciences, says that the field of epigenetics captures what happens to our genome after environmental exposures in a way that DNA sequencing by itself cannot.

"We tend to think of our genome as static, but it isn't. Most disease is influenced by some component of the changing environment and our variable exposure to it," says Feinberg, the King Fahd Professor of Medicine, Oncology, Molecular Biology and Genetics. "Looking at our genetic sequence alone doesn't tell us everything about that exposure."

One type of epigenetic change to the genome occurs when small chemical groups glom on to the ladder structure of DNA. Such chemical flags don't change the DNA code itself. Rather, they change how genes are turned on and off. Similarly, other epigenetic changes occur in how DNA and proteins are compacted in the nucleus of the cell. If they are packed tightly, DNA is less open to structures that "read" the chemical alphabet of genes and manufacture proteins.

Epigenetic changes have been found in the lungs of smokers and cord blood of infants prenatally exposed to smoke, writes Feinberg. He also points to epidemiologic studies showing an association between famine in Sweden, Germany and China and shortened lifespans and schizophrenia in subsequent generations, and studies in mice and humans of nutritional deficiencies that lead to disease, an indication that may occur early in life and can be heritable.

In addition, he says, the modern revolution in gene sequencing has revealed many mutations in cancers that control epigenetic factors.

Yet, he sees a wide array of diseases, including autoimmune disorders, diabetes and rheumatoid arthritis, that can benefit from integrating epigenetic and genetic research. "Epigenetics stands at the interface of the genome, development and environmental exposure," he writes.

He suggests that combining genomewide and epigenomewide association studies can overcome problems of assigning cause and effect to specific alterations among either type of study alone.

Feinberg also sees potential in combining and genetics to identify people at risk for disease and monitor a treatment's effectiveness.

He also says that scientists know comparatively little about how existing drugs may be altering patients' epigenomes. Such new discoveries, he says, will depend on collaborations between pharmacologists and computational and physical biologists.

Explore further: How randomness helps cancer cells thrive

More information: New England Journal of Medicine (2018). DOI: 10.1056/NEJMra1402513

Related Stories

How randomness helps cancer cells thrive

March 27, 2017
In a research effort that merged genetics, physics and information theory, a team at the schools of medicine and engineering at The Johns Hopkins University has added significantly to evidence that large regions of the human ...

Team finds new genetic and epigenetic contributors to diabetes

January 6, 2015
An analysis of the genomes and epigenomes of lean and obese mice and humans has turned up a wealth of clues about how genes and the environment conspire to trigger diabetes, Johns Hopkins researchers say. Their findings reveal ...

New tool pinpoints genetic sources of disease

March 20, 2014
Many diseases have their origins in either the genome or in reversible chemical changes to DNA known as the epigenome. Now, results of a new study from Johns Hopkins scientists show a connection between these two "maps." ...

Immune diseases inflict identical twins differently

December 13, 2017
Any parent with identical twins knows their two children are actually remarkably different. Identical twins are genetically identical, but they are not identical in gene expressions, a difference attributable to epigenetics. ...

Researchers investigate effect of environmental epigenetics on disease and evolution

August 3, 2015
Washington State University researchers say environmental factors are having an underappreciated effect on the course of disease and evolution by prompting genetic mutations through epigenetics, a process by which genes are ...

Recommended for you

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Geneticists make new discovery about how a baby's sex is determined

December 14, 2018
Medical researchers at Melbourne's Murdoch Children's Research Institute have made a new discovery about how a baby's sex is determined—it's not just about the X-Y chromosomes, but involves a 'regulator' that increases ...

CRISPR joins battle of the bulge, fights obesity without edits to genome

December 13, 2018
A weighty new study shows that CRISPR therapies can cut fat without cutting DNA. In a paper published Dec. 13, 2018, in the journal Science, UC San Francisco researchers describe how a modified version of CRISPR was used ...

Noncoding mutations contribute to autism risk

December 13, 2018
A whole-genome sequencing study of nearly 2,000 families has implicated mutations in 'promoter regions' of the genome—regions that precede the start of a gene—in autism. The study, which appears in the December 14 issue ...

New method for studying ALS more effectively

December 13, 2018
The neurodegenerative disease ALS causes motor neuron death and paralysis. However, long before the cells die, they lose contact with muscles as their axons atrophy. Researchers at Karolinska Institutet in Sweden have now ...

Paternal grandfather's high access to food may indicate higher mortality risk in grandsons

December 12, 2018
A paternal grandfather's access to food during his childhood is associated with mortality risk, especially cancer mortality, in his grandson, shows a large three-generational study from Stockholm University. The reason might ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.