New method allows scientists to watch brain cells interacting in real time

April 4, 2018, University of California, Los Angeles
An astrocyte (green) interacts with a synapse (red), producing an optical signal (yellow). Credit: UCLA/Khakh lab

An advance by UCLA neuroscientists could lead to a better understanding of astrocytes, a star-shaped brain cell believed to play a key role in neurological disorders like Lou Gehrig's, Alzheimer's and Huntington's disease.

Reported in Neuron, the new method enables researchers to peer deep inside a mouse's and watch astrocytes' influence over nerve-cell communication in real time.

In particular, the UCLA team focused on astrocytes' relationship with , the junctions between neurons that enable them to signal each other and convey messages.

"We're now able to see how astrocytes and synapses make physical contact, and determine how these connections change in disorders like Alzheimer's and Huntington's disease," said lead author Baljit Khakh, a professor of physiology and neurobiology at the David Geffen School of Medicine at UCLA. "What we learn could open up new strategies for treating those diseases, for example, by identifying cellular interactions that support normal brain function."

Neuroscientists have tried for years to measure how astrocytes' tentacles interact with synapses to perform important brain functions. Until now, however, no one could develop a test suitable for viewing adult brain tissue in living mice.

In the method created by Khakh's team, different colors of light pass through a lens to magnify objects that are invisible to the naked eye and far smaller than those viewable by earlier techniques.

The new test allowed them to observe how interactions between synapses and astrocytes change over time, as well as during various diseases, in mouse models.

"We know that astrocytes play a major role in how the brain works and also influence disease," said first author Chris Octeau, a postdoctoral fellow of physiology in Khakh's lab. "But exactly how the cells accomplish these tasks has remained murky."

It is unclear how often astrocytes make contact with synapses and how these interactions change during disease or as a result of different types of cellular activity.

The UCLA advance provides a powerful tool that scientists can use to address these questions.

"This new tool makes possible experiments that we have been wanting to perform for many years," said Khakh, a member of the UCLA Brain Research Institute. "For example, we can now observe how brain damage alters the way that astrocytes interact with neurons and develop strategies to address these changes."

Explore further: Researchers study astrocyte cells that may contribute to ALS and Alzheimer's

Related Stories

Researchers study astrocyte cells that may contribute to ALS and Alzheimer's

December 9, 2016
An achievement by UCLA neuroscientists could lead to a better understanding of astrocytes, a type of cell in the brain that is thought to play a role in Lou Gehrig's disease, also called amyotrophic lateral sclerosis, or ...

Researchers upend longstanding idea that astrocytes can't be differentiated from each other

July 14, 2017
From afar, the billions of stars in our galaxy look indistinguishable, just as the billions of star-shaped astrocytes in our brains appear the same as each other. But UCLA researchers have now revealed that astrocytes, a ...

Scientists use gene expression to understand how astrocytes change with age

January 11, 2018
Potentially explaining why even healthy brains don't function well with age, Salk researchers have discovered that genes that are switched on early in brain development to sever connections between neurons as the brain fine-tunes, ...

Star-shaped brain cells orchestrate neural connections

November 8, 2017
Brains are made of more than a tangled net of neurons. Star-like cells called astrocytes diligently fill in the gaps between neural nets, each wrapping itself around thousands of neuronal connections called synapses. This ...

Huntington's disease: Study discovers potassium boost improves walking in mouse model

March 30, 2014
Tweaking a specific cell type's ability to absorb potassium in the brain improved walking and prolonged survival in a mouse model of Huntington's disease, reports a UCLA study published March 30 in the online edition of Nature ...

Brain astrocytes linked to Alzheimer's disease

November 20, 2017
Astrocytes, the supporting cells of the brain, could play a significant role in the pathogenesis of Alzheimer's disease (AD), according to a new study from the University of Eastern Finland. This is the first time researchers ...

Recommended for you

The importins of anxiety

December 11, 2018
According to some estimates, up to one in three people around the world may experience severe anxiety in their lifetime. In a study described today in Cell Reports, researchers at the Weizmann Institute of Science have revealed ...

How returning to a prior context briefly heightens memory recall

December 11, 2018
Whether it's the pleasant experience of returning to one's childhood home over the holidays or the unease of revisiting a site that proved unpleasant, we often find that when we return to a context where an episode first ...

Neurons in the brain work as a team to guide movement of arms, hands

December 11, 2018
The apparent simplicity of picking up a cup of coffee or turning a doorknob belies the complex sequence of calculations and processes that the brain must undergo to identify the location of an item in space, move the arm ...

Using neurofeedback to prevent PTSD in soldiers

December 11, 2018
A team of researchers from Israel, the U.S. and the U.K. has found that using neurofeedback could prevent soldiers from experiencing PTSD after engaging in emotionally difficult situations. In their paper published in the ...

The richer the reward, the faster you'll likely move to reach it, study shows

December 11, 2018
If you are wondering how long you personally are willing to stand in line to buy that hot new holiday gift, scientists at Johns Hopkins Medicine say the answer may be found in the biological rules governing how animals typically ...

Study: Age, race differences determine risk of stroke in women and men

December 11, 2018
A new study found that, between the ages of 45 and 74 years, white women were less likely to have a stroke than white men, but at age 75 and older, there was no difference in stroke risk between white women and men. In contrast, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Anonym635088
not rated yet Apr 04, 2018

Don't panic! ALS (amyotrophic lateral sclerosis) can be reversed. I have had ALS since I was 45 years old. Am now 55 years old living ALS FREE. A great way to reverse ALS completely is with natural herbal remedy called ALS herbal remedy introduced by BEST HEALTH HERBAL CENTRE. This product will reverse your ALS within 5-6 weeks of usage. I used it, now am ALS free. To find this incredible product kindly visit ww w . besthealthherbalcentre. com.. Thanks....

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.