Primary pancreatic organoid tumor models for high-throughput phenotypic drug screening

Primary pancreatic organoid tumor models for high-throughput phenotypic drug screening
A Z-stack image was obtained after staining nuclei with Hoechst using confocal microscopy at 5 micron intervals and then assembled using ImageJ software. Credit: Shurong Hou, Ph.D.

A multidisciplinary team of scientists share recent advancements in innovative in-vitro cancer biology methods for screening drug-like molecules in cancer tissue relevant models in a new report published online ahead-of-print at SLAS Discovery. Entitled "Advanced Development of Primary Pancreatic Organoid Tumor Models for High-Throughput Phenotypic Drug Screening," the report can be accessed for free.

The authors—Senior Scientific Directors Timothy Spicer and Louis Scampavia and Post-Doctoral Associate Shurong Hou at Scripps Florida in collaboration with Cold Spring Harbor Laboratory, Greiner Bio-One, Nano3D Biosciences, Inc., University of Texas Health Science Center at Houston, and the Dana-Farber Cancer Institute—illustrate how a magnetic nanoparticle assembly approach is used to increase throughput dramatically while reducing costs. This technology combines specialized high-density microtiter plates formulated with an ultra-low attachment surface along with gold nanoparticles (nanoshuttles), which are used to label cancer in-vitro. Once labeled, a magnetic driver quickly pulls the cells into a 3D spheroid or organoid structure. This 3D structure is retained and drug-like molecules can then be added, affording the ability to ascertain their efficacy.

With the advent of cost-effective and high-throughput 3D tissue culture, the importance of developing this technology using patient-derived cancer cells is to ensure a more disease and physiologically relevant point of comparison to 2D monolayer testing, thereby validating the hypothesis of 3D relevance as a predictor of possible patient outcomes. This allows researchers to step closer to identifying patient-specific therapies and points in the direction of rapid 3D testing of patient-derived cells against FDA-approved drugs, which may be both affordable and amenable for a precision medicine approach to provide timely and critical feedback to physicians.


Explore further

Recreating liver tumors as organoids for faster, more accurate drug screening

More information: Advanced Development of Primary Pancreatic Organoid Tumor Models for High-Throughput Phenotypic Drug Screening DOI: 10.1177/2F2472555218766842
Provided by SLAS (Society for Laboratory Automation and Screening)
Citation: Primary pancreatic organoid tumor models for high-throughput phenotypic drug screening (2018, April 20) retrieved 20 February 2019 from https://medicalxpress.com/news/2018-04-primary-pancreatic-organoid-tumor-high-throughput.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
2 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more