Breakthrough bioelectronic medicine discovery made by decoding immune system's neural signals

May 7, 2018, Northwell Health's Feinstein Institute for Medical Research
Credit: CC0 Public Domain

Northwell Health's Feinstein Institute for Medical Research Assistant Professor Theodoros P. Zanos, PhD, and his collaborators are the first to decode specific signals the nervous system uses to communicate immune status and inflammation to the brain. Identifying these neural signals and what they're communicating about the body's health is a major step forward for bioelectronic medicine as it provides insight into diagnostic and therapeutic targets, and device development. These findings were published today in Proceedings of the National Academy of Sciences (PNAS).

It was already known that the vagus nerve, a nerve in the neck, controls the release of molecules called cytokines, which promote inflammation in many disease conditions. However, up until now, it was unknown if each type of was sending its own specific information about inflammation and immunity to the brain. In Dr. Zanos' study, he successfully decoded the neural signaling of two cytokines - IL-1β and TNF - in the vagus nerve of mice and found that each cytokine triggered their own specific response signal.

"These results show that it is possible to detect specific cytokine signaling from the body's receptors to the brain, through electrical signals in the vagus nerve," said Dr. Zanos, lead author of the PNAS paper. "We will now use the neural decoding methods from this study to identify the neural signaling of a variety of medical conditions in future bioelectronic medicine studies. This is a key step to provide insights to engineer cutting-edge diagnostic and therapeutic devices."

Bioelectronic medicine is an emerging field of medicine which combines neuroscience, molecular biology and bioengineering to tap into the nervous system to treat disease and injury without the use of pharmaceuticals. Conditions identified as benefitting from bioelectronic medicine therapies include rheumatoid arthritis, Crohn's disease, diabetes, paralysis and lupus.

"Dr. Zanos' findings are a major discovery in the field of bioelectronic medicine," said Kevin J. Tracey, MD, president and CEO of the Feinstein Institute. "We have long known that the nervous system communicates with the body. We can now learn the language by which it communicates, which enables us to fine tune how we help the body heal itself."

Explore further: Single low-magnitude electric pulse successfully fights inflammation

More information: Theodoros P. Zanos el al., "Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1719083115

Related Stories

Single low-magnitude electric pulse successfully fights inflammation

May 13, 2015
The Feinstein Institute for Medical Research, the research arm of the North Shore-LIJ Health System, and SetPoint Medical Inc., a biomedical technology company, today released the results of research on the therapeutic potential ...

Stimulating vagus nerve prevents blood loss following surgery, battlefield injuries

December 10, 2015
Stimulating the vagus nerve is a potentially efficacious and safe way to stop the flow of blood and prevent hemorrhagic complications following surgery and other invasive procedures, according to a researcher in the Center ...

Communication between nervous and immune systems detailed

June 20, 2017
Sangeeta S. Chavan, PhD, Valentin A. Pavlov, PhD, and Kevin J. Tracey, MD, president and CEO of The Feinstein Institute for Medical Research at Northwell Health, have completed a detailed analysis of how the nervous and immune ...

Study shows vagus nerve stimulation significantly reduces rheumatoid arthritis symptoms

July 4, 2016
Clinical trial data published in the Proceedings of the National Academy of Sciences (PNAS) demonstrates stimulating the vagus nerve with an implantable bioelectronic device significantly improved measures of disease activity ...

Electrical nerve stimulation could help patients regain motor functions sooner

May 2, 2018
Researchers at The Ohio State University Wexner Medical Center are among the first in the world studying how a specific type of neurostimulator can improve rehabilitation for stroke patients.

Recommended for you

A bad influence—the interplay between tumor cells and immune cells

October 16, 2018
Research at Huntsman Cancer Institute (HCI) at the University of Utah (U of U) yielded new insights into the environment surrounding different types of lung tumors, and described how these complex cell ecosystems may in turn ...

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Immune health maintained by meticulously ordered DNA

October 15, 2018
Walter and Eliza Hall Institute researchers have revealed how immune health is maintained by the exquisite organisation skills of a protein called Pax5.

New immunotherapy targeting blood-clotting protein

October 15, 2018
Normally, the blood protein fibrin does not enter the brain. But in several neurological disorders, the blood-brain barrier—which keeps large molecules in the blood from entering the brain—becomes abnormally permeable, ...

Enzyme that triggers autoimmune responses from T-cells in patients with MS found

October 11, 2018
A team of researchers from Switzerland, the U.S. and Spain has isolated an enzyme that triggers an autoimmune response from T-cells in patients with MS. In their paper published in the journal Science Translational Medicine, ...

Scientists reveal new cystic fibrosis treatments work best in inflamed airways

October 11, 2018
A new UNC School of Medicine study shows that two cystic fibrosis (CF) drugs aimed at correcting the defected CFTR protein seem to be more effective when a patient's airway is inflamed. This is the first study to evaluate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.