Genome's dark matter offers clues to major challenge in prostate cancer

May 28, 2018, University of Michigan
Arul Chinnaiyan, M.D., Ph.D. Credit: Rogel Cancer Center

The dark matter of the human genome may shed light on how the hormone androgen impacts prostate cancer.

Researchers at the University of Michigan Rogel Cancer Center identified a novel gene they named ARLNC1 that controls signals from the , a key player in prostate . Knocking down this long non-coding RNA in mice led to cancer cell death, suggesting this may be a key target for future therapies. The study is published in Nature Genetics.

Current prostate cancer treatments aim to block the receptor to stop cancer growth. But most patients become resistance to androgen-specific therapies, developing a challenging form of the disease called metastatic castration-resistant prostate cancer.

"The androgen receptor is an important target in prostate cancer. Understanding that target is important. This study identifies a feedback loop that we could potentially disrupt as an alternative to blocking the androgen receptor directly," says study senior author Arul Chinnaiyan, M.D., Ph.D., director of the Michigan Center for Translational Pathology.

Chinnaiyan's lab identified thousands of lncRNAs in a 2015 paper. Long non-coding RNAs are considered the dark matter of the genome because so little is known about them.

While searching for lncRNAs that might play a role in prostate cancer, the team discovered that ARLNC1 is elevated in prostate cancer relative to benign prostate tissue, which suggests a role in cancer development. And it was associated with androgen receptor signaling, which made it more intriguing.

The researchers found that the androgen receptor actually induces ARLNC1 expression. Then ARLNC1 binds to the androgen receptor messenger RNA transcript. This stabilizes the level of androgen receptor, which then feeds back to sustain ARLNC1.

"At the end of the day, you're creating or stabilizing more androgen receptor signaling in general and driving this oncogenic pathway forward. We're envisioning a potential therapy against ARLNC1 in combination with therapy to block the androgen receptor—which would hit the target and also this positive feedback loop," Chinnaiyan says.

When researchers blocked ARLNC1 in cell lines expressing androgen receptor, it led to cancer cell death and prevented tumor growth. In mouse models, elevating ARLNC1 caused large tumors to form. Knocking down ARLNC1 in mice caused tumors to shrink.

Researchers plan to continue studying the biology of ARLNC1 to understand how it's involved in progression and androgen receptor signaling.

"We want to further characterize the of the genome," Chinnaiyan says. "There are a number of these lncRNAs that we don't understand how they functionally work. Some of them will certainly be very useful as cancer biomarkers and we think a subset are important in biological processes."

Explore further: A new method for prostate cancer imaging

More information: Yajia Zhang et al, Analysis of the androgen receptor–regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression, Nature Genetics (2018). DOI: 10.1038/s41588-018-0120-1

Related Stories

A new method for prostate cancer imaging

July 21, 2016
Prostate cancer is one of the most common cancers in men. Tumor growth is critically regulated by the androgen receptor, and treatment strategies to lower androgens, such as testosterone, are a mainstay of clinical treatment. ...

New target for prostate cancer resistant to anti-hormone therapies

April 23, 2014
Prostate cancer becomes deadly when anti-hormone treatments stop working. Now a new study suggests a way to block the hormones at their entrance.

Study identifies new prostate cancer drug target

February 6, 2012
Research led by Wanguo Liu, PhD, Associate Professor of Genetics at LSU Health Sciences Center New Orleans, has identified a new protein critical to the development and growth of prostate cancer. The findings are published ...

Study identifies a key cellular pathway in prostate cancer

February 10, 2014
Mayo Clinic researchers have shed light on a new mechanism by which prostate cancer develops in men. Central to development of nearly all prostate cancer cases are malfunctions in the androgen receptor—the cellular component ...

Researchers find new co-regulator of the androgen receptor in prostate cancer

June 9, 2017
An international study led by University of Adelaide researchers has identified a new gene of interest linked to prostate cancer – and it's a gene with a split personality: it appears to play a major role in promoting cancer ...

Recommended for you

Critical role of DHA on foetal brain development revealed

August 17, 2018
Duke-NUS researchers have found evidence that a natural form of Docosahexaenoic Acid (DHA) made by the liver called Lyso-Phosphatidyl-Choline (LPC-DHA), is critical for normal foetal and infant brain development, and that ...

Scientists discover new method of diagnosing cancer with malaria protein

August 17, 2018
In a spectacular new study, researchers from the University of Copenhagen have discovered a method of diagnosing a broad range of cancers at their early stages by utilising a particular malaria protein that sticks to cancer ...

Researchers find pathways that uncover insight into development of lung cancer

August 17, 2018
Lung cancer is the leading cause of preventable cancer death. A disease of complex origin, lung cancer is usually considered to result from effects of smoking and from multiple genetic variants. One of these genetic components, ...

Developing an on-off switch for breast cancer treatment

August 17, 2018
T-cells play an important role in the body's immune system, and one of their tasks is to find and destroy infection. However, T-cells struggle to identify solid, cancerous tumors in the body. A current cancer therapy is using ...

New algorithm could improve diagnosis of rare diseases

August 17, 2018
Today, diagnosing rare genetic diseases requires a slow process of educated guesswork. Gill Bejerano, Ph.D., associate professor of developmental biology and of computer science at Stanford, is working to speed it up.

Gene silencing critical for normal breast development

August 17, 2018
Researchers have discovered that normal breast development relies on a genetic 'brake', a protein complex that keeps swathes of genes silenced.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.