Neurons in the striatum may regulate response to unexpected stimuli

May 10, 2018, Okinawa Institute of Science and Technology
Florescent imaging of a section of the striatum showing Cholinergic Interneurons (CINs) in green, and Spiny Projection Neurons (SPNs) in red. Credit: Okinawa Institute of Science and Technology

Changing our behavior based on unexpected cues from our environment is an essential part of survival. The ability to drop what you're doing when circumstances demand it could mean the difference between avoiding a speeding vehicle or getting hit by it. A new study at the Okinawa Institute of Science and Technology Graduate University (OIST) has delved into a brain mechanism that may regulate such adaptation.

In the study, which was published in eLife, researchers led by Dr. Stefano Zucca at the OIST Neurobiology Research Unit investigated nerve cells in the , a brain region involved in movement and motivation. Here, nerve cells called cholinergic interneurons (CINs) are in a near-constant state of activity, releasing a chemical called acetylcholine every time they fire. But if the brain gets an unexpected stimulus from outside the body – for example, a startling sound – the CINs will briefly stop firing.

"The purpose of these pauses is a mystery," said senior author Prof. Jeff Wickens. "We wanted to know, what do these pauses do?"

To find out, his team manipulated CIN activity with a method known as optogenetics. They used a virus to replace sections of these neurons' DNA with genes encoding for light-sensitive ion channels. Optical filaments were then implanted into the striatum of mice. By shining a laser beam into the cell along the filaments, the researchers could switch the CINs into active or inactive mode as the mice moved around their cage, allowing them to generate pauses in CIN firing at will.

The next step was the most challenging: Using electrodes inserted into single to record the electrical impulses generated during the pauses. Previous studies recorded from outside of neurons, which can only generate limited information about the impulses they generate. To get a clear recording of electrical potential, the team needed direct measurements from inside the cell. That's easier said than done: "You have to make a hole inside an individual cell and attach a probe without damaging it", said Wickens. "It's extremely fine work that Dr. Zucca perfected."

When they generated the pauses in CIN activity, the researchers observed a knock-on effect on the neurons that CINs connect to—neurons called spiny projection neurons (SPNs), which in turn send signals from the striatum to the rest of the brain. During the pauses, because SPN neurons received lower stimulation from CINs, they were less likely to fire themselves, the study showed. These pauses, then, give interrupting events significance by effectively muting the striatum's output signals.

The stops and starts in CIN activity may be a mechanism for controlling how animals respond to stimuli from their environment, says Wickens. For example, he said, "this mechanism might regulate how an animal stops eating when it hears an unfamiliar sound".

"The CINs only make up 1% of in the striatum, but they have a huge influence," said Prof. Wickens. "They're important in making changes in behavior, and play a part in movement disorders like Parkinson's disease when they malfunction."

The researchers now plan to explore the phenomenon in more detail. "Next we'd like to see if this pause is happening everywhere in the striatum at the same time, or if it's limited to specific locations", says Prof. Wickens. That will help reveal how it affects behaviors from moment to moment, he adds.

Explore further: Where brain cells get their information may determine their roles in diseases

More information: Stefano Zucca et al. Pauses in cholinergic interneuron firing exert an inhibitory control on striatal output in vivo, eLife (2018). DOI: 10.7554/eLife.32510

Related Stories

Where brain cells get their information may determine their roles in diseases

May 2, 2018
If 95 percent of your neighbors are chatty and outgoing, you probably know more about them than the 5 percent who are reclusive and shy. It's similar for neuroscientists who study the striatum, a brain region associated with ...

The eyes are the window into the brain

July 27, 2016
Our eyes are constantly moving, whether we notice or not. They jump from one focus point to another and even when we seem to be focused on one point, the eyes continue to reflexively move. These types of eye movements are ...

Striosome neurons in the basal ganglia play a key role in learning

April 18, 2018
A pleasant surprise or a nasty shock is likely to be a memorable experience. For instance, if you touch a hot oven, you very quickly learn not to do it again. Learning by trial and error, which can yield positive or negative ...

Studying behavior using light to control neurons

May 15, 2014
A new paper published by OIST's Neurobiology Research Unit identifies some of the neurons responsible for behavioral decisions in rats.

Rare neurons enable mental flexibility

June 24, 2015
Behavioral flexibility—the ability to change strategy when the rules change—is controlled by specific neurons in the brain, Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have ...

Study identifies neurons that fire at the beginning and end of a behavior as it becomes a habit

February 8, 2018
Our daily lives include hundreds of routine habits. Brushing our teeth, driving to work, or putting away the dishes are just a few of the tasks that our brains have automated to the point that we hardly need to think about ...

Recommended for you

Neuroimaging study reveals 'hot spot' for cue-reactivity in substance-dependent population

November 20, 2018
When patients with dependence on alcohol, cocaine or nicotine are shown drug cues, or images related to the substance, an area of their brain known as the medial prefrontal cortex (mPFC) shows increased activity, report investigators ...

When storing memories, brain prioritizes those experiences that are most rewarding

November 20, 2018
The brain's ability to preserve memories lies at the heart of our basic human experience. But how does the brain's mechanism for memory make sure we remember the most significant events and not clog our minds with superfluous ...

To predict the future, the brain has two clocks

November 20, 2018
That moment when you step on the gas pedal a split second before the light changes, or when you tap your toes even before the first piano note of Camila Cabello's "Havana" is struck. That's anticipatory timing.

Researchers hope to be able to replace dysfunctional brain cells

November 20, 2018
A new study by researchers at Karolinska Institutet supports the theory that replacement of dysfunctional immune cells in the brain has therapeutic potential for neurodegenerative diseases like ALS and Alzheimer's disease. ...

White matter pathway and individual variability in human stereoacuity

November 20, 2018
Researchers in the Center for Information and Neural Networks (CiNet), the National Institute of Information and Communications Technology and Osaka University have identified a human white matter pathway associated with ...

Can genetic therapy help kids with Angelman syndrome overcome seizures?

November 20, 2018
Angelman syndrome is a genetic disease with no cure. Children grow up with severe intellectual disabilities and a range of other problems, arguably the worst of which are epileptic seizures. Now scientists at the UNC School ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.