Research identifies unconventional immune cell capable of fighting viral infections

May 2, 2018, University of Birmingham
Credit: CC0 Public Domain

Research led by the University of Birmingham has identified a novel unconventional type of immune cell capable of fighting viral infections.

The study, published today in Nature Communications and carried out in collaboration with the Academic Medical Center, Netherlands, and Skolkovo Institute of Science and Technology, Russia, focussed on T cells that control our immune system.

Specifically the research has defined a subset of 'unconventional V-delta-2 lymphocytes', which are a type of Gamma Delta T cell - an ancient class of immune cell that has been relatively poorly understood.

The new findings establish that this subtype is not only present at birth, but persists in adults at low levels, and can increase in numbers massively during .

The researchers examined how this subtype of T cell responded to a virus infection called cytomegalovirus. They found that when these T cells detected signs of the virus infection they both increased in numbers and became 'licensed to kill'.

Lead Author Dr Martin Davey, of the University of Birmingham's Institute of Immunology and Immunotherapy, said:

"These cells can clearly adapt to some key challenges that life throws at them.

"Upon viral infection, they change from harmless precursors into what appear to be ruthless killers.

"They can then access tissues, where we believe they detect and destroy virally infected target cells."

The results build on previous work from the same research group, published last month in Trends in Immunology, which also suggests that many gamma delta T cells that control our immune system can adapt in the face of infectious challenges.

The team is now trying to better understand the scenarios when these unconventional killer T cells are most important and how to harness them to advance treatments to fight .

Dr Davey added: "We think these cells contribute to defence against viral in the liver, a site which is exposed to many potentially dangerous infectious diseases.

"They may also be particularly important when other aspects of our immune system are not working at full strength, such as in newborn babies, but also in transplant patients who are taking immunosuppressive drugs to prevent organ rejection.

"In these scenarios, boosting the activity of these could prove beneficial to patients, and we are now starting to explore how to do that."

Explore further: A new role for an old immune cell may lead to novel therapies for infection and cancer

More information: Martin S. Davey et al, The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9- subsets, Nature Communications (2018). DOI: 10.1038/s41467-018-04076-0

Martin S. Davey et al. Recasting Human Vδ1 Lymphocytes in an Adaptive Role, Trends in Immunology (2018). DOI: 10.1016/j.it.2018.03.003

Related Stories

A new role for an old immune cell may lead to novel therapies for infection and cancer

March 1, 2017
A new study has identified a previously undescribed role for a type of unconventional T cell with the potential to be used in the development of new therapies for infection and cancer.

HIV cell dysfunction discovery sheds light on how virus works

April 7, 2018
A team of chemical and biomedical engineers from the Cockrell School of Engineering at The University of Texas at Austin, in collaboration with researchers from the University of Pennsylvania, have discovered that HIV-infected ...

How viruses disarm the immune system

February 5, 2018
How do viruses that cause chronic infections, such as HIV or hepatitis c virus, manage to outsmart their hosts' immune systems?

Hepatitis therapy: Kupffer cells adjust the balance between pathogen control and hepatocyte regenera

January 17, 2018
Inflammation of the liver can result from different causes. Besides infections with hepatitis B virus (HBV) and hepatitis C virus (HCV), other viruses such as cytomegalovirus (CMV) are able to trigger acute hepatitis. Sometimes ...

Novel genomic tools provide new insight into human immune system

January 19, 2018
When the body is under attack from pathogens, the immune system marshals a diverse collection of immune cells to work together in a tightly orchestrated process and defend the host against the intruders. For many decades, ...

New insight into leading viral cause of congenital birth defects

April 4, 2017
A study led by Cardiff University has revealed why CMV - a virus responsible for 1000 birth defects a year in the UK - is so adept at evading the immune system. The new findings could help in the development of treatments ...

Recommended for you

A bad influence—the interplay between tumor cells and immune cells

October 16, 2018
Research at Huntsman Cancer Institute (HCI) at the University of Utah (U of U) yielded new insights into the environment surrounding different types of lung tumors, and described how these complex cell ecosystems may in turn ...

New immunotherapy targeting blood-clotting protein

October 15, 2018
Normally, the blood protein fibrin does not enter the brain. But in several neurological disorders, the blood-brain barrier—which keeps large molecules in the blood from entering the brain—becomes abnormally permeable, ...

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Immune health maintained by meticulously ordered DNA

October 15, 2018
Walter and Eliza Hall Institute researchers have revealed how immune health is maintained by the exquisite organisation skills of a protein called Pax5.

Enzyme that triggers autoimmune responses from T-cells in patients with MS found

October 11, 2018
A team of researchers from Switzerland, the U.S. and Spain has isolated an enzyme that triggers an autoimmune response from T-cells in patients with MS. In their paper published in the journal Science Translational Medicine, ...

Scientists reveal new cystic fibrosis treatments work best in inflamed airways

October 11, 2018
A new UNC School of Medicine study shows that two cystic fibrosis (CF) drugs aimed at correcting the defected CFTR protein seem to be more effective when a patient's airway is inflamed. This is the first study to evaluate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.