Breakthrough treatment for crippling jaw disease created

June 20, 2018, University of California, Irvine
'We believe this represents an important first in all joint healing studies,' says UCI distinguished biomedical engineering professor Kyriacos Athanasiou. Credit: Steve Zylius / UCI

A first-ever tissue implant to safely treat a common jaw defect, known as temporomandibular joint dysfunction, has been successfully tested by UCI-led researchers in a large animal model, according to new findings.

"We were able to show that we could achieve exceptional healing of the TMJ area after eight weeks of treatment," said UCI distinguished biomedical engineering professor Kyriacos Athanasiou, senior author on the study published in Science Translational Medicine. He has spent nearly two decades researching the condition and potential treatments, since learning the widespread extent of the problem.

About 25 percent of adults worldwide—90 percent of them premenopausal women—suffer from difficulty eating and talking, chronic mouth pain, arthritis and other issues due to defects in the disc that hinges together two key jawbones.

Now, using animal models, the scientists at UCI, UC Davis and University of Texas Houston School of Dentistry have successfully removed a tiny bit of existing rib tissue, isolated its , and used them to tissue-engineer jaw disc cartilage using a "self-assembling" process they developed. They then surgically inserted the new cartilage into the faulty hinge point of the jaw joint. The approach was allogeneic, meaning that they took rib cells from one individual and implanted the new cartilage into another. Eight weeks later, the defects were completely gone.

The appearance of the tissue-engineered implants, which were formed from cartilage cells. Credit: N. Vapniarsky et al., Science Translational Medicine (2018)
"This is a terrible condition, I have friends and colleagues who have suffered from it, so it's extremely satisfying to think we could provide relief," said co-author Jerry Hu, UCI principal design engineer, who developed a critical stage of the work, which involved reining in the sometimes "poorly behaved" rib cells into smoothly functioning jaw disc cartilage.

Researchers and physicians have struggled for decades to effectively treat TMJ afflictions. One infamous technique involved putting Teflon into the jaw area, which disintegrated into bits in the brain and elsewhere. "It was a disaster," said Athanasiou. After hearing about that and a subsequent dearth of research, he plunged in, first at UT, then at Rice, UC Davis and now at UCI.

The next steps will be to ensure long-term effectiveness and safety of the implant in the animals, and then conduct clinical trials.

"We hope this will lead to new treatments for humans," said Natalia Vapniarsky, a veterinary pathologist in the UC Davis School of Veterinary Medicine, where the surgery was done. "Most medical management approaches for TMJ disc issues currently aren't curative, but palliative. Patients come back needing further help, but by that time, the disc and joint are destroyed beyond repair, so all that can be offered is a prosthetic. We wanted to explore an earlier, regenerative solution."

Breakthrough treatment for crippling jaw disease created
Minipigs with a TMJ defect that were treated with the tissue-engineered implant exhibited more healing and correction of the defect compared to untreated animals. Credit: N. Vapniarsky et al., Science Translational Medicine (2018)

Orange County, a biomedical hub where UCI is located, is the perfect location for translating the breakthrough work into a usable product, Athanasiou said. He and Hu explained that while it might be possible to take someone's own rib tissue and grow it, it would require a lengthy delay compared to using readily available implants. Unlike other tissues and organs, cartilage from one body is not rejected when it is implanted in another body.

Athanasiou said that the results might also apply to treatment of hip, knee and other problem areas. The animals that did not receive the cartilage implants saw a 300 percent increase in osteoarthritis, which many TMJ patients eventually develop, while the treated ones did not.

"This is the first time that cogent healing has been shown in the TMJ area, and, I daresay, the first time anyone has shown successful biomechanical healing in any joint. It's key that we can achieve regeneration of an ailing tissue with our engineered implant, one that's mechanically suited to withstand stresses," he said. "So we believe this represents an important first in all joint healing studies."

Explore further: Making lab-grown tissues stronger

More information: N. Vapniarsky el al., "Tissue engineering toward temporomandibular joint disc regeneration," Science Translational Medicine (2018). stm.sciencemag.org/lookup/doi/ … scitranslmed.aaq1802

Related Stories

Making lab-grown tissues stronger

October 30, 2014
Lab-grown tissues could one day provide new treatments for injuries and damage to the joints, including articular cartilage, tendons and ligaments.

Researchers seek to improve techniques for joint defect treatment

September 25, 2017
Different surface topographies and materials provide interesting ways to study cell behaviour and potentially provide novel solutions for treating joint defects. Tissue engineering methods that simulate native cartilage could ...

Knee cartilage product approved to repair defects

December 14, 2016
(HealthDay)—Maci (autologous cultured chondrocytes) has been approved by the U.S. Food and Drug Administration to repair defective cartilage of the knee.

Surgeons implant knee cartilage grown from patient's own cells

August 20, 2015
Doctors at The Ohio State University Wexner Medical Center are the first in Ohio to use a tissue implant made from a patient's own cells to treat knee cartilage damage. Healthy cartilage is crucial to the smooth and painless ...

Recommended for you

Infants born to obese mothers risk developing liver disease, obesity

November 16, 2018
Infant gut microbes altered by their mother's obesity can cause inflammation and other major changes within the baby, increasing the risk of obesity and non-alcoholic fatty liver disease later in life, according to researchers ...

New study shows NKT cell subsets play a large role in the advancement of NAFLD

November 16, 2018
Since 2015 it has been known that the gut microbiota could have a direct impact on nonalcoholic fatty liver disease (NAFLD), which affects up to 12% of adults and is a leading cause of chronic liver disease. In the November ...

Antibiotic prescribing influenced by team dynamics within hospitals

November 15, 2018
Antibiotic prescribing by doctors is influenced by team dynamics and cultures within hospitals.

Zika may hijack mother-fetus immunity route

November 14, 2018
To cross the placenta, Zika virus may hijack the route by which acquired immunity is transferred from mother to fetus, new research suggests.

New research aims to help improve uptake of hepatitis C testing

November 14, 2018
New research published in Scientific Reports shows persisting fears about HIV infection may impact testing uptake for the hepatitis C Virus (HCV).

Maternally acquired Zika immunity can increase dengue disease severity in mouse pups

November 14, 2018
To say that the immune system is complex is an understatement: an immune response protective in one context can turn deadly over time, as evidenced by numerous epidemiological studies on dengue infection, spanning multiple ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.