Discovery of a major technical error will improve epigenetics research

June 26, 2018, Linköping University
Colm Nestor, Assistant Professor, Linköping University. Credit: Linköping University

An error in one of the most widely used methods in epigenetics, DIP-seq, can cause misleading results, researchers at Linköping University, Sweden, have shown. This may have major significance in the research field, where Big Data and advanced methods of DNA analysis are used to study vast amounts of epigenetic data. The error can be corrected in previously collected DIP-seq data, which may lead to new discoveries from previous studies of human epigenetics. The results have been published in the journal Nature Methods.

In principle, every cell has the same DNA sequence. However, different cell types use very different groups of genes. This means that additional signals are required to control which genes are used in each individual cell type. One type of such signal consists of chemical groups directly attached to the DNA sequence. These chemical modifications of the DNA sequence form part of what is commonly called the . Epigenetic regulation of genes plays an important role in normal human development but is also associated with many diseases, such as cancer.

Researchers at Linköping University have now discovered a weakness in one of the most frequently used methods in epigenetic research, DNA immunoprecipitation sequencing (DIP-seq). Put simply, this is based on picking out the parts of the DNA that carry a particular epigenetic signal. For this, the researchers use various antibodies that recognise a specific chemical structure and bind to it. The antibodies are subsequently sorted and the sequences of the DNA that they have bound to are determined. Nestor's group noticed that certain epigenetic marks always occurred in the same place, even in DNA that shouldn't contain those epigenetic marks at all.

"Our discovery highlights the importance of experimental validation when using high-throughput technologies in research. Without such experimental rigour, pervasive errors can hide in plain sight, concealed by their consistency across studies," says Colm Nestor, Assistant Professor at the Department of Clinical and Experimental Medicine and lead investigator of the study.

By analysing more than 125 existing datasets Nestor's group revealed that DIP-seq commonly detected DNA sequences that did not have any . These false positives constitute 50-90 percent of the detected DNA regions, and the magnitude of the effect differs between different datasets."Now that we know about this error, it's extremely simple to subtract it away. Correcting for these errors will allow novel discoveries to be made from the wealth of epigenetics data already in the public domain" says Colm Nestor.

The researchers point out that the vast majority of results from previous studies are correct.

"We should continue to use these methods but correct for these errors by using appropriate experimental design," says Colm Nestor.

Explore further: Don't forget the 'epi' in genetics research, scientist says

More information: Antonio Lentini et al, A reassessment of DNA-immunoprecipitation-based genomic profiling, Nature Methods (2018). DOI: 10.1038/s41592-018-0038-7

Related Stories

Don't forget the 'epi' in genetics research, scientist says

April 5, 2018
In a review article published April 5 in the New England Journal of Medicine, scientist Andrew Feinberg, M.D., calls for more integration between two fields of DNA-based research: genetics and epigenetics.

​A new principle for epigenetic changes discovered

January 23, 2017
In a new study, researchers at Uppsala University have found evidence of a new principle for how epigenetic changes can occur. The principle is based on an enzyme, tryptase, that has epigenetic effects that cause cells to ...

New technique maps life's effects on our DNA

July 20, 2014
Researchers at the BBSRC-funded Babraham Institute, in collaboration with the Wellcome Trust Sanger Institute Single Cell Genomics Centre, have developed a powerful new single-cell technique to help investigate how the environment ...

Tea consumption leads to epigenetic changes in women

May 31, 2017
Epigenetic changes are chemical modifications that turn our genes off or on. In a new study from Uppsala University, researchers show that tea consumption in women leads to epigenetic changes in genes that are known to interact ...

Keeping egg cells fresh with epigenetics

January 1, 2018
Keeping egg cells in stasis during childhood is a key part of female fertility. New research published today in Nature Structural and Molecular Biology sheds some light on the role of epigenetics in placing egg cells into ...

Genetic guides to epigenetics

February 10, 2015
Dirk Schübeler and his group at the Friedrich Miescher Institute for Biomedical Research (FMI) identify determinants that set epigenetic marks along the genome. The new study, published in Nature, shows that genetic activity ...

Recommended for you

Analytical tool predicts genes that can cause disease by producing altered proteins

July 19, 2018
Predicting genes that can cause disease due to the production of truncated or altered proteins that take on a new or different function, rather than those that lose their function, is now possible thanks to an international ...

Childhood stress leaves lasting mark on genes

July 18, 2018
Kids who experience severe stress are more likely to develop a host of physical and mental health problems by the time they reach adulthood, including anxiety, depression and mood disorders. But how does early life stress ...

Study shows DNA methylation related to liver disease among obese patients

July 18, 2018
DNA methylation is a molecular process that helps enable our bodies to repair themselves, fight infection, get rid of environmental toxins, and even to think. But sometimes this process goes awry.

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

World's largest study on allergic rhinitis reveals new risk genes

July 17, 2018
An international team of scientists led by Helmholtz Zentrum München and University of Copenhagen has presented the largest study so far on allergic rhinitis in the journal Nature Genetics. The data of nearly 900,000 participants ...

New platform poised to be next generation of genetic medicines

July 16, 2018
A City of Hope scientist has discovered a gene-editing technology that could efficiently and accurately correct the genetic defects that underlie certain diseases, positioning the new tool as the basis for the next generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.