Drug may quell deadly immune response when trauma spills the contents of our cells' powerhouses

June 11, 2018, Medical College of Georgia at Augusta University
Photo of Drs. Keith O'Malley, Patricia Martinez Quinones and Camilla Ferreira Wenceslau. Credit: Phil Jones, Senior Photographer, Augusta University

When trauma spills the contents of our cell powerhouses, it can evoke a potentially deadly immune response much like a severe bacterial infection.

A drug that cleaves escaped proteins called N-formyl peptides appears to reduce resulting dangerous leakage from blood vessels and improve survival, report researchers at the Medical College of Georgia at Augusta University.

The research drug deformylase, or something similar, may one day be a novel treatment for with systemic inflammatory response syndrome, or SIRS, a body-wide inflammatory reaction to trauma or infection, as well as sepsis, a systemic infection when the cause of the infection, like a bacteria, is known.

"We are hoping our work will improve the care of trauma and other ," says Dr. Patricia Martinez Quinones, general surgery resident at MCG and AU Health.

Martinez Quinones is presenting the work in both animal models and human cells during the Oral Presentations by Young Investigators session on the final day of the Shock Society's 41st Annual Conference June 9-12 in Scottsdale, Arizona.

"Once mitochondria (cell powerhouses) are damaged, they just break apart and their contents spill into the circulation," says Martinez Quinones.

Michondria use N-formyl peptides to make energy for our cells but significant volumes outside the powerhouse can quickly become a detriment. Deformylase appears to neutralize them by removing their formyl group—a combination of carbon and oxygen atoms with hydrogen.

This formyl group is part of every bacterial protein as well as all 13 proteins made by mitochondria, says Dr. Camilla Ferreira Wenceslau, research scientist in the MCG Department of Physiology and senior author of the ongoing studies.

"That is what triggers the immune system to trigger an inflammatory cascade," says Dr. Keith O'Malley, interim chief of MCG's Division of Trauma/Surgical Critical Care and a co-investigator on the ongoing studies.

In fact, the mitochondria themselves can similarly neuter the proteins and those benign versions are normally the only ones it releases, until there is an injury.

"The entire hypothesis behind this—and it's called the danger theory—is that our mitochondria used to be bacteria so when their contents are released our body treats them like an infection," Martinez Quinones says.

The results can be pretty much the same as if external bacteria entered our bodies: rapid heart rate, fever, precipitous drop in blood pressure and swelling.

"Trauma releases fragments of mitochondria that still carry the signature from bacteria," says Wenceslau.

If outside bacteria are the source of the immune reaction, an antibiotic should quell the resulting cascade of damage, O'Malley notes. But despite the similarities, there are no known antibiotics that target spilled mitochondrial contents, Martinez Quinones adds.

Deformylase, or something like it, on the other hand may one day be useful at both infective sepsis from an invader and this "sterile" sepsis from our own mitochondria, she notes.

In the lab of MCG physiology chair Dr. R. Clinton Webb, the investigators have looked at a mouse model of sepsis. They've also incubated human endothelial cells that line the aorta with N-formyl-rich plasma taken from patients with severe trauma.

Deformylase improved sepsis survival in their animal model by 28 percent and prevented separation of the tightly knit that keep blood vessel content contained.

"What we saw is that there was a marked improvement in the vascular function of the animals that were treated with deformylase meaning that the vessels that were leaky and couldn't contract now could," Martinez Quinones says. "Also, once we treated the plasma with deformylase, the endothelial cell disruption went away."

Their findings to date have them theorizing that circulating levels of mitochondrial DNA and N-formyl peptides might one day be good biomarkers that could change both how patients are monitored and treated, Martinez Quinones says.

Five years ago, the researchers showed that N-formyl peptides have a powerful relaxant effect in rat arteries that carry blood from the aorta to the gastrointestinal tract. They surmised that when high levels are present, following trauma and other disease, it exacerbates dilation of the arteries and as well as inflammation.

In a study, published last year in the Journal of Trauma and Acute Care Surgery, they looked daily at levels of mitochondrial DNA and N-formyl peptides in the fluid of patients with an open abdominal wound following a significant injury. They found that a routine flushing of the area significantly reduced levels of N-formyl peptides. They hypothesized then and are now studying whether more frequent flushing can help those patients keep levels low and reduce their risk of SIRS and sepsis.

Current studies have them looking in the peritoneal fluid, blood and urine at levels of these peptides in patients who are getting the standard irrigation of the area every 48 hours versus every 24 hours, Martinez Quinones says. If they find more frequent flushes control the levels, that could be sufficient for patients like these with access.

However O'Malley notes that many trauma patients as well as patients with other tissue-damaging disease like cancer and pneumonia do not have ready access at the injury site.

The current version of deformylase they are using has an extremely short half-life so their many pursuits include a more stable version that could be used clinically for those patients, Martinez Quinones says.

The single layer of endothelial cells lining blood vessel walls, which ensure that contents stay inside, are a major target when the body perceives a major infection like sepsis. Patients can experience what's termed vascular collapse, so they lose tone and the body gets less blood. The typically tight juncture of get lost so blood vessels become leaky and fluid seeps into nearby tissue prompting dangerous swelling in organs like the kidneys and brain. In a sort of vicious cycle, this worsening scenario prompts production of things like oxidative stress and nitric oxide, which exacerbate problems like inflammation and low .

"When you are in shock, you only retain about a third of the fluid in your bloodstream," O'Malley says. "The rest of it seeps out." Blood pressure drops dramatically, and patients can end up in shock and nonresponsive, he says.

While the results are clear—and potentially deadly—the mechanism which results in the vascular dysfunction is not clear, the researchers say.

Sepsis is the second leading cause of death in non-coronary care ICUs in the United States, with a mortality rate of up to 45 percent, according to the Society of Critical Care Medicine.

Explore further: Fragments of cell powerhouse trigger immune response that leads to kidney damage, failure after trauma

Related Stories

Fragments of cell powerhouse trigger immune response that leads to kidney damage, failure after trauma

August 22, 2016
Following major trauma like a car crash, debris from the powerhouses of damaged cells appear to make their way to an immune system outpost in the kidneys, setting in motion events that can permanently damage or destroy the ...

Surviving sepsis campaign update focuses on critical first hour

May 17, 2018
For patients with sepsis, a serious infection causing widespread inflammation, immediate treatment is essential to improve the chances of survival. An updated "Hour-1 Bundle" of the international, evidence-based guidelines ...

Putting the brakes on sepsis

May 10, 2018
Sepsis—an extreme response to infection—can cause damage to multiple organ systems when it triggers an uncontrolled inflammatory response.

Blood type O patients may have higher risk of death from severe trauma

May 1, 2018
Blood type O is associated with high death rates in severe trauma patients, according to a study published in the open access journal Critical Care that involved 901 Japanese emergency care patients.

An immune system "mistake" could be the cause of organ failure in intensive care patients

October 14, 2015
At least one in every two intensive care patient displays Systematic Inflammatory Response Syndrome (SIRS). This clinical picture resembles sepsis but without any identifiable bacterial or fungal infection being present. ...

When sepsis patients face brain impairment, is gut bacteria to blame?

March 7, 2018
Surviving a critical illness is no small feat, but it's only half the battle for many patients. Serious complications can still result after an illness appears to have cleared.

Recommended for you

Composition of complex sugars in breast milk may prevent future food allergies

June 12, 2018
The unique composition of a mother's breastmilk may help to reduce food sensitization in her infant, report researchers at the University of California San Diego School of Medicine with colleagues in Canada.

Drug may quell deadly immune response when trauma spills the contents of our cells' powerhouses

June 11, 2018
When trauma spills the contents of our cell powerhouses, it can evoke a potentially deadly immune response much like a severe bacterial infection.

Immune system does not recover despite cured hepatitis C infection

June 11, 2018
Changes to the immune system remain many years after a hepatitis C infection heals, a new study by researchers at Karolinska Institutet, Sweden, and Hannover Medical School, Germany, shows. The findings, presented in Nature ...

Food allergies connected to children with autism spectrum disorder

June 8, 2018
A new study from the University of Iowa finds that children with autism spectrum disorder (ASD) are more than twice as likely to suffer from a food allergy than children who do not have ASD.

A 'super' receptor that helps kill HIV infected cells

June 8, 2018
While treatments for HIV mean that the disease is no longer largely fatal, the world still lacks a true therapy that can eradicate the virus across a globally—and genetically different—population.

Antibody blocks inflammation, protects mice from hardened arteries and liver disease

June 6, 2018
Researchers at University of California San Diego School of Medicine discovered that they can block inflammation in mice with a naturally occurring antibody that binds oxidized phospholipids (OxPL), molecules on cell surfaces ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.