Men may contribute to infertility through newly discovered part of sperm

June 7, 2018, University of Toledo
Lilli Fishman, UT Ph.D. candidate, and Dr. Tomer Avidor-Reiss, professor in the UT Department of Biological Sciences. Credit: Dan Miller, The University of Toledo

Life doesn't begin the way we thought it did.

A new study at The University of Toledo shows that a father donates not one, but two centrioles through the during fertilization, and the newly discovered sperm structure may contribute to infertility, miscarriages and birth defects.

The newly discovered centriole functions similarly and along with the known centriole. However, it is structured differently.

"This research is significant because abnormalities in the formation and function of the atypical centriole may be the root of infertility of unknown cause in couples who have no treatment options available to them," said Dr. Tomer Avidor-Reiss, professor in the UT Department of Biological Sciences. "It also may have a role in early pregnancy loss and embryo development defects."

The centriole is the only essential cellular structure contributed solely by the father. It is the origin of all of the centrioles in the trillions of cells that make up the adult human body. Centrioles are essential for building the cell's antennae, known as cilia, and cytoskeleton, as well as completing accurate cell division.

A zygote, or fertilized egg cell, needs two centrioles to start life. It was previously thought that sperm provides a single centriole to the egg and then duplicates itself.

"Since the mother's egg does not provide centrioles, and the father's sperm possesses only one recognizable centriole, we wanted to know where the second centriole in zygotes comes from," Avidor-Reiss said. "We found the previously elusive centriole using cutting-edge techniques and microscopes. It was overlooked in the past because it's completely different from the known centriole in terms of structure and protein composition."

The atypical centriole contains a small core set of proteins needed for the known sperm centriole to form a fully functional centriole after fertilization in the zygote using the egg's proteins.

Dr. Tomer Avidor-Reiss, professor in the UT Department of Biological Sciences. Credit: Dan Miller, The University of Toledo

This discovery may provide new avenues for diagnostics and therapeutic strategies for male infertility and insights into early embryo developmental defects, according to the research titled "A Novel Atypical Sperm Centriole is Functional During Human Fertilization" that was published today in Nature Communications.

In addition to , Avidor-Reiss and his research team studied the sperm of flies, beetles and cattle.

"The whole idea for this study started with the fly," said Lilli Fishman, UT Ph.D. candidate who is being honored with the 2018 Lalor Foundation Merit Award from the Society for the Study of Reproduction for her work on the project. "Basic fly research indicated the misconception in sperm structure. It has been incredible to be part of the ensuing process that included incredible scientists from four states and two countries."

The cutting-edge techniques and microscopes used on this research include super-resolution microscopy; electron microscopy with high-pressure freezing; and correlative light and electron microscopy.

"The super-resolution microscopy was critical for this discovery," Avidor-Reiss said. "The technology allows you to see proteins at the highest resolution."

The University of Toronto, National Cancer Institute, University of Michigan, and University of Pittsburgh also contributed to the research.

Avidor-Reiss and his team are taking this research to the clinical level.

"We are working with the Urology Department at The University of Toledo Medical Center to study the clinical implications of the atypical centriole to figure out if it's associated with infertility and what kind of infertility," Avidor-Reiss said.

Explore further: Finding the Achilles heel of cancer

Related Stories

Finding the Achilles heel of cancer

March 28, 2018
A research team led by Monica Bettencourt Dias, from Instituto Gulbenkian de Ciencia (IGC, Portugal), has discovered important features of cancer cells that may help clinicians fighting cancer. The researchers observed that ...

Recommended for you

Compound made inside human body stops viruses from replicating

June 20, 2018
The newest antiviral drugs could take advantage of a compound made not by humans, but inside them. A team of researchers has identified the mode of action of viperin, a naturally occurring enzyme in humans and other mammals ...

Research reveals zero proof probiotics can ease your anxiety

June 20, 2018
If you're expecting probiotics to reduce your anxiety, it might be time to put down that yogurt spoon—or supplement bottle—and call a professional instead.

Long-term estrogen therapy changes microbial activity in the gut, study finds

June 20, 2018
Long-term therapy with estrogen and bazedoxifene alters the microbial composition and activity in the gut, affecting how estrogen is metabolized, a new study in mice found.

Simple sugar delays neurodegeneration caused by enzyme deficiency

June 20, 2018
A new therapeutic approach may one day delay neurodegeneration typical of a disease called mucopolysaccharidoses IIIB (MPS IIIB). Neurodegeneration in this condition results from the abnormal accumulation of essential cellular ...

Researchers use AI to improve mammogram interpretation

June 20, 2018
In an effort to reduce errors in the analyses of diagnostic images by health professionals, a team of researchers from the Department of Energy's Oak Ridge National Laboratory has improved understanding of the cognitive processes ...

Everything big data claims to know about you could be wrong

June 19, 2018
When it comes to understanding what makes people tick—and get sick—medical science has long assumed that the bigger the sample of human subjects, the better. But new research led by UC Berkeley suggests this big-data ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.