Radiomic model approach for characterizing nodules promising

Radiomic model approach for characterizing nodules promising

(HealthDay)—A radiomic low-dose computed tomography (LDCT)-based approach is promising for indeterminate screen-detected nodule characterization, according to a study published online May 14 in PLOS One.

Tobias Peikert, M.D., from the Mayo Clinic in Rochester, Minnesota, and colleagues used the National Lung Screening Trial dataset to develop independent quantitative variables assessing radiologic nodule using 726 indeterminate nodules (318 benign and 408 malignant). To enhance the prediction accuracy and interpretability of the multivariable model, analysis was performed using the least absolute shrinkage and selection operator (LASSO) method for variable selection and regularization.

The researchers found that LASSO multivariate modeling selected eight of the originally considered 57 quantitative radiologic features. These features included variables capturing location (vertical location); size (volume estimate); shape (flatness); density (texture analysis); and characteristics (surface complexity and estimates of surface curvature), all with P < 0.001. For the eight features, the optimism-corrected area under the curve was 0.939.

"Our novel radiomic LDCT-based approach for indeterminate screen-detected nodule characterization appears extremely promising however independent external validation is needed," the authors write.

Some study authors are co-inventors of an LDCT-based radiomic classifier for lung adenocarcinomas, distinct from the present work, licensed to Imbio Inc.

More information: Abstract/Full Text

Journal information: PLoS ONE

Copyright © 2018 HealthDay. All rights reserved.

Citation: Radiomic model approach for characterizing nodules promising (2018, June 28) retrieved 20 April 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Researchers identify method to overcome false positives in CT imaging for lung cancer


Feedback to editors