Watching stem cells repair spinal cord in real time

June 22, 2018, Monash University
Credit: Monash University

Monash University researchers have restored movement and regenerated nerves using stem cells in zebra fish where the spinal cord is severely damaged.

The research, presented at the International Society for Stem Cell Research conference in Melbourne this week, raises the possibility that these same stem cells could be triggered in human patients who have suffered paralysing damage to their nervous system.

Dr. Jan Kaslin from Monash University's Australian Regenerative Medicine Institute (ARMI), used the model of nerve regeneration.

Zebrafish are small, tropical that are known as "master-regenerators" because they have the capacity to regenerate many tissues or organs following , and being see-through scientists can literally watch the regeneration within the living fish.

Dr. Kaslin and colleagues isolated a group of precursor cells and stem cells that very quickly colonise and regenerate the fish's when it is damaged. Using confocal and light sheet microscopy Dr. Kaslin and colleagues were able to track and image the regeneration of living nerves in real time – allowing the first glimpse into how these precursor and stem cells move, behave and repair the spinal cord.

Dr. Kaslin has been able to watch, and film, the rapid process – which can take as little as two days to restore movement in zebra fish larvae and within 2-4 weeks in the adults.

"It's remarkable how quickly these fish regain their capacity to swim after injury," Dr. Kaslin said.

The researchers identified two "waves" of cell regeneration: the migration of neural precursors to the injury – which led to rapid recovery of movement – followed by the activation of stem in areas surrounding the injury site.

He added that by studying the genes and molecules involved in the recruitment of these remarkable to the injured nerve cord.

"It may be possible to learn how to turn these same switches on in humans who have had spinal cord or brain injury," Dr. Kaslin said.

The study opens the way to learning how to trigger the central nervous system in humans to regenerate, according to Dr. Kaslin.

Explore further: Scientist identify first steps in muscle regeneration

Related Stories

Scientist identify first steps in muscle regeneration

May 20, 2016
Scientists from Monash University's Australian Regenerative Medicine Institute ARMI have found the first real evidence of how muscles may be triggered to regenerate or heal when damaged. The research could open the way to ...

Fish study raises hope for spinal injury repair

May 30, 2012
(Medical Xpress) -- Scientists have unlocked the secrets of the zebra fish’s ability to heal its spinal cord after injury, in research that could deliver therapy for paraplegics and quadriplegics in the future.

Using donor stem cells to treat spinal cord injury

August 28, 2017
A new study in mice published in The Journal of Neuroscience details a potential therapeutic strategy that uses stem cells to promote recovery of motor activity after spinal cord injury.

Endangered salamander offers clues on healing spinal cord injury

April 23, 2018
One of the most vexing problems with spinal cord injuries is that the human body does not rebuild nerves once they have been damaged. Other animals, on the other hand, seem to have no problem repairing broken neurons.

In a break with dogma, myelin boosts neuron growth in spinal cord injuries

May 23, 2018
Recovery after severe spinal cord injury is notoriously fraught, with permanent paralysis often the result. In recent years, researchers have increasingly turned to stem cell-based therapies as a potential method for repairing ...

Recommended for you

Sensitive babies become altruistic toddlers

September 25, 2018
Our responsiveness to seeing others in distress accounts for variability in helping behavior from early in development, according to a study published September 25 in the open-access journal PLOS Biology by Tobias Grossmann ...

Immune cell pruning of dopamine receptors may modulate behavioral changes in adolescence

September 25, 2018
A study by MassGeneral Hospital for Children (MGHfC) researchers finds that the immune cells of the brain called microglia play a crucial role in brain development during adolescence, but that role is different in males and ...

Scientists reverse a sensory impairment in mice with autism

September 25, 2018
Using a genetic technique that allows certain neurons in the brain to be switched on or off, UCLA scientists reversed a sensory impairment in mice with symptoms of autism, enabling them to learn a sensory task as quickly ...

Why it doesn't get dark when you blink

September 25, 2018
People blink every five seconds. During this brief moment, no light falls on the retina, yet people continue to observe a stable picture of the environment with no intervals of darkness. Caspar Schwiedrzik and Sandrin Sudmann, ...

Researchers identify new cause of brain bleeds

September 25, 2018
A team of researchers including UCI project scientist Rachita Sumbria, Ph.D. and UCI neurologist Mark J. Fisher, MD have provided, for the first time, evidence that blood deposits in the brain may not require a blood vessel ...

Lung inflammation from childhood asthma linked with later anxiety

September 25, 2018
Persistent lung inflammation may be one possible explanation for why having asthma during childhood increases your risk for developing anxiety later in life, according to Penn State researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.