New ceria nanoparticles attack Parkinson's disease from three fronts

July 27, 2018, Institute for Basic Science
Figure 1: Three types of ceria nanoparticles to treat Parkinson’s disease. Ceria, TPP-ceria, and cluster-ceria nanoparticles target intracellular, mitochondrial, and extracellular reactive oxygen species, respectively. Credit: Institute for Basic Science

Researchers at the Center for Nanoparticle Research, within the Institute for Basic Science (IBS, South Korea), have developed a set of nanoparticles for Parkinson's disease treatment. Tested in mice and published in Angewandte Chemie as a "hot paper," this study represents the first biomedical application of nanoparticles in the clearance of reactive oxygen by-products in Parkinson's, and gives new hints of therapeutic targets. In the future, the system is expected to be used in the identification and treatment of other pathologies caused by reactive oxygen species, including: cancers, cardiovascular diseases, neurodegenerative diseases, and sepsis.

Parkinson's disease is characterized by the sudden degeneration and death of neurons that secrete dopamine in the brain. Accumulation of damages the neurons, by contributing to the onset of mitochondrial dysfunction, neuroinflammation, and neuronal death.

The brain's low antioxidant levels and abundance of lipids, make it more vulnerable to the side effects of reactive species, including free radicals. The oxidative stress caused by these molecules inside mitochondria, together with neuroinflammation due to intracellular and extracellular oxidative stress are considered important causes of Parkinson's disease.

Until now, there has been no technique to selectively clear reactive oxygen species, nor to distinguish their effect according to their cellular localization. To solve these problems, IBS nanoparticle researchers have devised three types of ceria nanoparticles with different sizes and surface properties, capable of selectively removing reactive oxygen species from mitochondria, intracellular, and extracellular spaces.

Ceria nanoparticles aimed at the intracellular spaces have a size of 11 nm, which is small enough to enter the cell, and a negative surface charge (ζ-potential: -23 mV) which prevents them from entering the mitochondria membrane. The ceria nanoparticle targeting oxygen free radicals in mitochondria are decorated with triphenylphosphonium (TPP), which confers them a positive surface charge of +45 mV. Finally, nanoparticle clusters of hundreds of thousands of 3 nm ceria nanoparticles with a size of 400 nm and a negative surface charge, are capable of removing reactive oxygen species while remaining outside the cell.

Figure 2: Mouse brain sections showing tyrosine hydroxylase (TH, a hallmark of Parkinson’s disease, in red) and nanoparticles (green). TH levels are higher in the brain of mice treated with ceria and TPP-ceria nanoparticles, indicating that these are critical targets for the removal of oxygen free radicals. WT are healthy mice, while MPTP indicates Parkison’s disease. Credit: Institute for Basic Science

The nanoparticles delivered to a part of the brain, called corpus striatum, in mouse models improved the typical signs of Parkinson's disease: neuro-inflammation, oxidative stress, and diminishing level of the enzyme tyrosine hydroxylase – a hallmark of Parkinson's disease – which produces a dopamine precursor and affects mobility.

Attacking oxidative stress and neuroinflammation from three different fronts allowed IBS scientists to pinpoint the most critical therapeutic targets. In particular, removing reactive oxygen species in extracellular spaces with cluster-ceria nanoparticles diminished neuro-inflammation, but did not show any effect in reducing oxidative stress and maintaining normal levels of tyrosine hydroxylase. Instead, mice treated with ceria nanoparticles and the TPP-ceria nanoparticles had significantly higher tyrosine hydroxylase levels than the controls. The results suggest that lowering oxidative stress in intracellular and/or mitochondrial compartments is important to treat Parkinson's disease.

"These experiments have identified the essential role of intracellular and mitochondrial reactive oxygen species in the progression and treatment of Parkinson's disease. We hope that the ceria nanoparticle system will be useful tools for developing therapeutic agents in diseases that involve , as well as other degenerative diseases," explains KWON Hyek Jin, first author of the study.

"This result is not only the first to develop a technique to selectively remove reactive oxygen species from intracellular, extracellular, and mitochondrial spaces, but also to investigate the effects of Parkinson's disease, the cause of the disease, and a new medical application of nanoparticles," explains HYEON Taeghwan, the corresponding author of the study.

Ceria nanoparticles work like artificial antioxidants by mimicking the activity of natural antioxidants, like catalase- and superoxide dismutase (SOD). Cerium ions on the surface switch between Ce3+ and Ce4+ in the presence of reactive oxygen species. In the past, the recyclable function of the ceria has been exploited by the same research group in animal models of ischemic stroke, and Alzheimer's disease.

Explore further: Team suppresses oxidative stress and neuronal death associated with Alzheimer's disease

More information: Hyek Jin Kwon et al. Ceria Nanoparticle Systems for Selective Scavenging of Mitochondrial, Intracellular, and Extracellular Reactive Oxygen Species in Parkinson's Disease, Angewandte Chemie (2018). DOI: 10.1002/ange.201805052

Related Stories

Team suppresses oxidative stress and neuronal death associated with Alzheimer's disease

February 25, 2016
The brain  is an enormous network of communication, containing over 100 billion nerve cells, or neurons, with branches that connect at more than 100 trillion points. They are constantly sending signals through a vast neuron ...

Antioxidant benefits of sleep

July 12, 2018
Understanding sleep has become increasingly important in modern society, where chronic loss of sleep has become rampant and pervasive. As evidence mounts for a correlation between lack of sleep and negative health effects, ...

Antioxidant therapies may help in the fight against neurodegenerative diseases

August 1, 2016
A new review examines the potential of antioxidant approaches for the treatment of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis.

Recommended for you

First-of-its-kind Parkinson's biomarker guidelines invigorates drive for treatments

August 15, 2018
Parkinson's disease affects more than 4 million people worldwide, with numbers projected to double in the next few decades. With no known cure, there is a race for treatments to slow or stop the progression of the disease. ...

Study identifies chaperone protein implicated in Parkinson's disease

August 13, 2018
Reduced levels of a chaperone protein might have implications for the development and progression of neurodegenerative diseases such as Parkinson's disease and Lewy body dementia, according to new research from investigators ...

Function of gene mutations linked to neurological diseases identified

August 10, 2018
Several gene mutations have been linked to Parkinson's disease, but exactly how and where some of them cause their damage has been unclear. A new Yale study, published in the Journal of Cell Biology, shows that one of the ...

Biomarkers link fatigue in cancer, Parkinson's

August 9, 2018
Biological markers responsible for extreme exhaustion in patients with cancer have now been linked to fatigue in those with Parkinson's disease, according to new research from Rice University.

Researchers examining Parkinson's resilience

August 2, 2018
Diseases have a spectrum of risk, even those partially embedded in genes such as Parkinson's disease.

Japan human trial tests iPS cell treatment for Parkinson's

July 30, 2018
Japanese researchers on Monday announced the first human trial using a kind of stem cell to treat Parkinson's disease, building on earlier animal trials.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Anonym807763
not rated yet 19 hours ago
At 60 i was diagnose of PARKINSONS DISEASE, i was on Carbidopa and Pramipexole for two years, they helped alot but not for long. As the disease progressed my symptoms worsened, with my neurologist guidance i started on natural alternative PARKINSONS DISEASE treatment from R.H.F. (Rich Herbs Foundation), the treatment worked very effectively, my severe symptoms simply vanished, i feel better now than I have ever felt and i can feel my strength again. Visit ww w. richherbsfoundation. c om. My neurologist was very open when looking at alternative medicines and procedures, this alternative parkinson disease treatment is a breakthrough.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.