New insight into Huntington's disease may open door to drug development

July 9, 2018, McMaster University
Professor Ray Truant (left) and Ph.D. student Laura Bowie of McMaster University have developed a new hypothesis on Huntington's disease, published in PNAS, which shows promise to open new avenues for drug development for the condition. Credit: McMaster University

McMaster University researchers have developed a new theory on Huntington's disease which is being welcomed for showing promise to open new avenues of drug development for the condition.

Huntington's disease is caused by a mutation in the gene that makes the protein called . A team of researchers led by McMaster has found there is a unique type of signalling coming from damaged DNA, that signals huntingtin activity in DNA repair, and that this signalling is defective in Huntington's disease.

A study developing the new hypothesis was published today in the Proceedings of the National Academy of Sciences (PNAS).

"The concept was that if we applied the signalling molecule back in excess, even orally, this signalling can be restored in the Huntington's disease mouse brain," said Laura Bowie, a Ph.D. student in the Department of Biochemistry and Biomedical Sciences at McMaster. "The net result was that we fixed the modification of huntingtin not seen in mutant huntingtin in Huntington's disease."

Using this hypothesis, the study team discovered a molecule called N6-furfuryladenine, derived from the repair of DNA damage, which corrected the defect seen in mutant huntingtin.

"Based on dosing by different ways of this molecule in mouse Huntington's disease models, Huntington's disease symptoms were reversed," said Bowie. "The mutant huntingtin protein levels were also restored to normal, which was a surprise to us."

Ray Truant, senior author on the study, has dedicated his career to Huntington's disease research and how mutation leads to Huntington's disease. His lab was the first to show that normal huntingtin was involved in DNA repair.

Truant argues that the traditional and controversial amyloid/protein misfolding hypothesis, where a group of proteins stick together forming brain deposits, is likely the result of the disease, rather than its cause.

He said he considers this paper the most significant of his career.

"This is an important new lead and a new hypothesis, but it is important for people to know this is not a drug or cure," said Truant, professor in the Department of Biochemistry and Biomedical Sciences at McMaster.

"This is the first new hypothesis for Huntington's disease in 25 years that does not rely on the version of the amyloid hypothesis which has consistently failed in for other diseases."

Huntington's disease is a hereditary, neurodegenerative illness with devastating physical, cognitive and emotional symptoms. Worldwide, approximately one of every 7,000 people can develop Huntington's disease. Currently there is no treatment available to alter the course of the disease.

The study is an original and important contribution to the field of neurodegeneration, says Yves Joanette, scientific director of the Canadian Institutes of Health Research Institute of Aging.

"This research shows how complex and diverse the routes to neurodegenerative processes in the brain can be," said Joanette. "This study will inspire not only research on Huntington's disease, but also in some of the contributing processes to the development of many other neurodegenerative diseases."

Bev Heim-Myers, CEO of the Huntington Society of Canada, said: "The Huntington Society of Canada is proud to support such leading edge research."

"Innovative research initiatives, such as the work led by the team in Dr. Truant's lab, including Ph.D. student Laurie Bowie, has the potential to transform HD research. The answers we find for Huntington's disease will likely lead to better understanding of treatments for other neurological diseases and it is important that we continue this cross-talk amongst ."

Explore further: Team finds essential clue to Huntington's disease solution

More information: Laura E. Bowie el al., "N6-Furfuryladenine is protective in Huntington's disease models by signaling huntingtin phosphorylation," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1801772115

Related Stories

Team finds essential clue to Huntington's disease solution

July 29, 2013
Researchers at McMaster University have discovered a solution to a long-standing medical mystery in Huntington's disease (HD).

New drugs target delay of Huntington's symptoms

May 31, 2011
(Medical Xpress) -- McMaster researchers have discovered a new drug target that may be effective at preventing the onset of Huntington's disease, working much the same way heart medications slow the progression of heart disease ...

Scientists move closer to treatment for Huntington's disease

February 26, 2018
A new variant of the gene-editing CRISPR/Cas9 system is safer and more specific than versions previously used in early research towards a treatment for Huntington's disease, shows research published today in Frontiers in ...

Huntington's disease gene dispensable in adult mice

March 7, 2016
Adult mice don't need the gene that, when mutated in humans, causes the inherited neurodegenerative disorder Huntington's disease.

Scientists develop therapeutic protein, protect nerve cells from Huntington's Disease

September 13, 2016
A new scientific study reveals one way to stop proteins from triggering an energy failure inside nerve cells during Huntington's disease. Huntington's disease is an inherited genetic disorder caused by mutations in the gene ...

Recommended for you

New drug target for remyelination in MS is identified

July 17, 2018
Remyelination, the spontaneous regeneration of the fatty insulator in the brain that keeps neurons communicating, has long been seen as crucial to the next big advance in treating multiple sclerosis (MS). However, a lack ...

Artificial neural networks now able to help reveal a brain's structure

July 17, 2018
The function of the brain is based on the connections between nerve cells. In order to map these connections and to create the connectome, the "wiring diagram" of a brain, neurobiologists capture images of the brain with ...

Convergence of synaptic signals is mediated by a protein critical for learning and memory

July 16, 2018
Inside the brain, is a complex symphony of perfectly coordinated signaling. Hundreds of different molecules amplify, modify and carry information from tiny synaptic compartments all the way through the entire length of a ...

Synapse-specific plasticity governs the identity of overlapping memory traces

July 16, 2018
Memories are formed through long-term changes in synaptic efficacy, a process known as synaptic plasticity, and are stored in the brain in specific neuronal ensembles called engram cells, which are activated during corresponding ...

'Concussion pill' shows promise in pre-clinical pilot study

July 16, 2018
In 2016, funded by a $16 million grant from Scythian, the multidisciplinary Miller School team embarked on a five-year study to examine the effects of combining CBD (a cannabinoid derivative of hemp) with an NMDA antagonist ...

Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018
A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.