Neuronal 'barcodes' shape complex networks in the brain

July 6, 2018, VIB (the Flanders Institute for Biotechnology)
Credit: CC0 Public Domain

The brain is an enormously complex organ. Understanding how billions of brain cells make precise connections is a major challenge for neuroscientists. Professor Joris de Wit and his team (VIB-KU Leuven) have unraveled a molecular code that determines the shape, location and function of connections between individual neurons. These findings could help researchers better understand brain disorders such as autism and schizophrenia.

The human contains billions of neurons that form highly specialized and complex networks regulating thoughts, emotions, memory and muscle movements. Signals are transmitted along these networks from one neuron to another at designated points of contact called synapses.

In order to get this many neurons connected in an organized and meaningful way, it is critical that synapse formation be tightly regulated. Professor Joris de Wit (VIB-KU Leuven) wants to know how, when and where these signal-transmitting connections arise: "How do neurons recognize their appropriate partners? How do they know which type of synapse needs to be where? These are very basic questions, highlighting how much we still need to learn about the brain."

Adhesion molecules

De Wit's team went looking for answers by studying . These can be found on the cell surface, where they physically connect neurons to one another. Neurons express large and diverse sets of molecules, but it is not clear why they would need so many different adhesion molecules.

Therefore, the team set out to study how a set of three different adhesion molecules, present in the same neurons in the hippocampus (the area of our brain responsible for memory), regulates neuronal connectivity.

"We first analyzed the distribution of these adhesion molecules in great detail, as the that we study form lots of different synapses with other ," explains Anna Schroeder, one of the researchers in de Wit's laboratory. "With the help of our imaging experts, we used a combination of light and electron microscopy to examine the architecture of the different synapses. We also took advantage of electrophysiology in order to investigate changes in synaptic ."

A barcode at the synapse

The scientists found that while one of the adhesion molecules controls the number of connections, the other two affect signal transmission instead—one positively and the other negatively. In combination, the three adhesion molecules precisely define how synapses look and function.

"Think of it as a zip code or barcode for brain cells," explains Schroeder. "The adhesion molecules are digits with a specific function, but in combination they determine a more complex pattern that shapes the connection between two neurons. In other words, they define the identity of that connection."

In this way, the many different adhesion molecules found in across the brain allow for precise fine-tuning of the different connections they make.

Connections and brain disease

All three adhesion molecules under investigation have been associated with neurodevelopmental and neuropsychiatric disorders, such as autism and schizophrenia. Understanding their role in brain connectivity is thus of vital importance, says de Wit:

"Now that we understand that these adhesion molecules not only shape the number, but also the architecture and function of synapses, this may lead to a better understanding of how disease-associated mutations in the genes that encode these molecules affect circuit connectivity and function."

Explore further: For the first time, researchers see structure that allows brain cells to communicate

More information: A modular organization of LRR protein-mediated synaptic adhesion defines synapse identity, Schroeder et al. Neuron 2018.

Related Stories

For the first time, researchers see structure that allows brain cells to communicate

July 27, 2016
For more than a century, neuroscientists have known that nerve cells talk to one another across the small gaps between them, a process known as synaptic transmission (synapses are the connections between neurons). Information ...

Protein family linked to autism suppresses the development of inhibitory synapses

January 28, 2013
Synapse development is promoted by a variety of cell adhesion molecules that connect neurons and organize synaptic proteins. Many of these adhesion molecules are linked to neurodevelopmental disorders; mutations in neuroligin ...

Structure of neuron-connecting synaptic adhesion molecules discovered

December 2, 2014
A research team has found the three-dimensional structure of synaptic adhesion molecules, which orchestrate synaptogenesis. The research findings also propose the mechanism of synapses in its initial formation.

Structural insights into the modulation of synaptic adhesion by MDGA for synaptogenesis

July 11, 2017
Synapses connected by various synaptic adhesion molecules are communication spaces between neurons for transmitting information. Among various synaptic adhesion molecules, neuroligins are arguably the most widely studied ...

What learning looks like in the brain

April 23, 2018
When we learn the connections between neurons strengthen. Addiction or other neurological diseases are linked to abnormally strong connections. But what does learning look like on the cellular and molecular level? How do ...

Molecule may help maintain brain's synaptic balance

June 13, 2017
Many neurological diseases are malfunctions of synapses, or the points of contact between neurons that allow senses and other information to pass from finger to brain. In the brain, there is a careful balance between the ...

Recommended for you

Overlooked signal in MRI scans reflects amount, kind of brain cells

September 24, 2018
An MRI scan often generates an ocean of data, most of which is never used. When overlooked data is analyzed using a new technique developed at Washington University School of Medicine in St. Louis, they surprisingly reveal ...

Even mild physical activity immediately improves memory function, study finds

September 24, 2018
People who include a little yoga or tai chi in their day may be more likely to remember where they put their keys. Researchers at the University of California, Irvine and Japan's University of Tsukuba found that even very ...

Thousands of unknown DNA changes in the developing brain revealed by machine learning

September 24, 2018
Unlike most cells in the rest of our body, the DNA (the genome) in each of our brain cells is not the same: it varies from cell to cell, caused by somatic changes. This could explain many mysteries—from the cause of Alzheimer's ...

Implant helps paralysed man walk again

September 24, 2018
Five years after he was paralysed in a snowmobile accident, a man in the US has learned to walk again aided by an electrical implant, in a potential breakthrough for spinal injury sufferers.

Common painkiller not effective for chronic pain after traumatic nerve injury

September 24, 2018
A new study out today in the Journal of Neurology finds that pregabalin is not effective in controlling the chronic pain that sometimes develops following traumatic nerve injury. The results of the international study, which ...

Study of protein 'trafficker' provides insight into autism and other brain disorders

September 22, 2018
In the brain, as in business, connections are everything. To maintain cellular associates, the outer surface of a neuron, its membrane, must express particular proteins—proverbial hands that reach out and greet nearby cells. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.