Parkinson's treatments being developed could benefit most people with the disease

July 25, 2018, University of Pittsburgh Schools of the Health Sciences
A fluorescent sensor for LRRK2 activity reveals the protein may be involved in many cases of Parkinson's disease. Credit: the Greenamyre lab

A gene linked to 3 to 4 percent of people with Parkinson's disease could play an important role in most, if not all, people with the disease, according to new study findings from the University of Pittsburgh School of Medicine and UPMC. The gene, called LLRK2, was previously thought to only cause disease when mutated, but researchers have found that it may be just as significant in the non-hereditary form of the disease, according to the study published today in the journal Science Translational Medicine.

"This discovery is extremely consequential for Parkinson's disease because it suggests that therapies currently being developed for a small group of patients may benefit everybody with the disease," said senior author J. Timothy Greenamyre, M.D., Ph.D., Love Family Professor of Neurology in Pitt's School of Medicine, chief of the Movement Disorders Division at UPMC and director of the Pittsburgh Institute for Neurodegenerative Diseases (PIND).

Parkinson's affects one million people in the U.S. and as many as 10 million worldwide and has no known cause, but is thought to involve both genetic and environmental factors. In 2004, researchers discovered that mutations in the LRRK2 gene (commonly pronounced as "Lark2"), overactivated the protein and caused Parkinson's in a small group of people, often in a hereditary fashion. However, the LRRK2 protein is difficult to study because it is present in extremely small amounts in that are affected in Parkinson's.

To overcome this problem, Greenamyre and his team engineered a molecular 'beacon' that attached to LRRK2 and glowed red under a microscope only if the protein was active. This allowed them to also reveal the nerve cells in which LRRK2 was active in the brain.

The researchers applied the test to postmortem brain tissue donated to science by Parkinson's patients, none of whom had mutations in LRRK2, and healthy individuals of approximately the same age.

Remarkably, the test indicated that in 'dopamine neurons,' which are the brain cells most commonly affected in Parkinson's, LRRK2 was highly active in individuals affected by the , but not in the healthy individuals. This suggests that LRRK2 overactivity may be important in all people with Parkinson's, not just those who have a mutation in the gene.

A second major finding of the study was that it connected two proteins that have separately been recognized as important players in causing Parkinson's—LRRK2 and alpha-synuclein. Accumulation of alpha-synuclein leads to the formation of structures called 'Lewy bodies,' a hallmark of Parkinson's.

While enormous efforts have been focused on alpha-synuclein, the cause of its accumulation is still poorly understood. Using a rodent model of Parkinson's induced by an environmental toxin, Greenamyre and his team discovered that activation of LRRK2 blocked the mechanisms that cells use to clear excess alpha-synuclein, leading directly to its accumulation. The researchers then treated the animals with a drug currently being developed to treat familial Parkinson's patients by blocking LRRK2 activity. The drug prevented the accumulation of alpha-synuclein and formation of Lewy bodies.

"LRRK2 ties together both genetic and environmental causes of Parkinson's, as we were able to show that external factors like oxidative stress or toxins can activate LRRK2, which can in turn cause Lewy bodies to form in the brain," noted lead author Roberto Di Maio, Ph.D., an assistant professor in Greenamyre's lab and a researcher at the Ri.MED Foundation.

In the future, Greenamyre expects to build on these findings to discover how neurodegeneration caused by LRRK2 overactivation can be prevented, and identify how and environmental toxins cause LRRK2 activation.

Explore further: Discovery may lead to a treatment to slow Parkinson's disease

More information: Di Maio el al., "LRRK2 activation in idiopathic Parkinson's disease," Science Translational Medicine (2018). stm.sciencemag.org/lookup/doi/ … scitranslmed.aar5429

Related Stories

Discovery may lead to a treatment to slow Parkinson's disease

July 19, 2016
Using a robust model for Parkinson's disease, University of Alabama at Birmingham researchers and colleagues have discovered an interaction in neurons that contributes to Parkinson's disease, and they have shown that drugs ...

Early intervention may be possible for Parkinson's disease

December 9, 2016
One of the largest post-mortem brain studies in the world has confirmed that a protein (LRRK2) associated with the development of Parkinson's disease is increased in the pre-symptom stages, leading researchers to believe ...

Link between tuberculosis and Parkinson's disease discovered

May 22, 2018
The mechanism our immune cells use to clear bacterial infections like tuberculosis (TB) might also be implicated in Parkinson's disease, according to a new collaborative study led by scientists from the Francis Crick Institute ...

Study raises doubts on a previous theory of Parkinson's disease

July 6, 2018
Parkinson's disease was first described by a British doctor more than 200 years ago. The exact causes of this neurodegenerative disease are still unknown. In a study recently published in eLife, a team of researchers led ...

Parkinson's gene initiates disease outside of the brain

March 21, 2018
Until very recently, Parkinson's had been thought a disease that starts in the brain, destroying motion centers and resulting in the tremors and loss of movement. New research published this week in the journal Brain, shows ...

Scientists show that a key Parkinson's biomarker can be identified in the retina

June 8, 2018
A study involving scientists from the University of Alicante and the United States notes that the accumulation of a protein known as alpha-synuclein in the retina is a key Parkinson's biomarker that could help detect the ...

Recommended for you

Two compounds in coffee may team up to fight Parkinson's

December 10, 2018
Rutgers scientists have found a compound in coffee that may team up with caffeine to fight Parkinson's disease and Lewy body dementia—two progressive and currently incurable diseases associated with brain degeneration.

New Parkinson's disease drug target revealed through study of fatty acids

December 4, 2018
The human brain is rich in lipids. Investigators studying Parkinson's disease (PD) have become increasingly interested in lipids since both molecular and genetic studies have pointed to the disruption of the balance of the ...

A toxin that travels from stomach to brain may trigger Parkinsonism

December 4, 2018
Combining low doses of a toxic herbicide with sugar-binding proteins called lectins may trigger Parkinsonism—symptoms typical of Parkinson's disease like body tremors and slowing of body motions—after the toxin travels ...

Experimental cancer drug shows promise for Parkinson's

December 3, 2018
The study, funded by Parkinson's UK, suggests that the drug, tasquinimod, which is not yet on the market, works by controlling genes that may cause Parkinson's. This happens when the drug interacts with a protein inside brain ...

Parkinson's therapy creates new brain circuits for motor function, study finds

November 28, 2018
Scientists have uncovered that an emerging gene therapy for Parkinson's disease creates new circuits in the brain associated with improved motor movement. These findings, published today in Science Translational Medicine ...

The puzzle of a mutated gene lurking behind many Parkinson's cases

November 15, 2018
Genetic mutations affecting a single gene play an outsized role in Parkinson's disease. The mutations are generally responsible for the mass die-off of a set of dopamine-secreting, or dopaminergic, nerve cells in the brain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.