Researchers prevent, reverse renal injury by inhibiting immune-regulating molecule

July 10, 2018 by Jacqueline Mitchell, Beth Israel Deaconess Medical Center

Special cells called podocytes aid the kidneys as they clean the blood and balance the body's fluid levels. Podocytes filter blood as it passes through the cells' foot-like projections they are named for, interwoven like the fingers of clasped hands. Podocyte damage—indicated by proteinuria or abnormal proteins in the urine—is a common symptom of diseases including the autoimmune disorder lupus and non-immune diseases and can result in kidney failure requiring dialysis or organ transplant.

In a research article published in the Journal of Clinical Investigation on July 9, a team of scientists led by George C. Tsokos, MD, Chief of the Division of Rheumatology at Beth Israel Deaconess Medical Center (BIDMC), describes how overexpression of an immune regulating molecule called CaMK4 can destroy podocytes' structure and function. What's more, the researchers demonstrated that inhibiting CaMK4 can prevent and even reverse in lupus-prone mice.

"When we looked at human tissue samples from , we observed that people with lupus and non-autoimmune kidney disease showed increased levels of CaMK4," said Tsokos, who is also a Professor of Medicine at Harvard Medical School. "We wondered what would happen if we inhibited CaMK4 specifically?"

Working in mice which develop lupus spontaneously, Tsokos and colleagues—including bioengineers at Yale University and Yale Medical School—blocked CaMK4's deleterious effects on podocytes by delivering an inhibitor directly to the special cells. The podocytes maintained their structure and function in the lupus-prone mice. In fact, the inhibitor prevented podocyte damage in mice with autoimmune and reversed podocyte damage in mice injected with Adriamycin, a drug known to cause kidney damage—a finding Tsokos says opens the door to potential new therapies not just for people with lupus, but also other autoimmune and non-autoimmune diseases that impact the kidney.

"The finding that preserving the structure and function of podocytes through inhibition of CaMK4 inhibits inflammatory immune complexes and thus prevents damage reverses the classical dogma—widely accepted for the last 60 years—that inflammation instigates damage to the ," said Tsokos. "Only if podocytes are damaged can the immune complexes be deposited."

Next, Tsokos and colleagues would like to learn more about how podocyte damage occurs, how late in the process inhibiting CaMK4 can reverse podocyte damage and how these findings apply to other renal diseases, including diabetes. They also hope to initiate a clinical trial.

Explore further: New high-throughput screening method may uncover novel treatments for kidney disease

Related Stories

New high-throughput screening method may uncover novel treatments for kidney disease

April 9, 2015
A newly developed assay may help investigators identify novel drug candidates to protect kidney cells and prevent or treat chronic kidney disease (CKD). The advance is described in an upcoming issue of the Journal of the ...

Researchers identify pathway important for kidney function

November 17, 2016
Boston University researchers, in collaboration with Centers for Therapeutic Innovation (CTI) at Pfizer Inc. (NYSE:PFE), have discovered a novel molecular pathway needed to regulate kidney podocytes—special octopus-like ...

Exercise may stem kidney damage in lupus patients

September 19, 2017
(HealthDay)—Regular exercise may slow kidney damage in people with lupus while stress may prompt the opposite effect, new research suggests.

Targeting certain kidney cells may help treat kidney failure

January 9, 2014
New research reveals that certain cells contribute to kidney function decline, making them attractive targets for treatments against kidney failure. The findings will appear in an upcoming issue of the Journal of the American ...

New compound stops progressive kidney disease in its tracks

December 7, 2017
Progressive kidney diseases, whether caused by obesity, hypertension, diabetes, or rare genetic mutations, often have the same outcome: The cells responsible for filtering the blood are destroyed. Reporting today in Science, ...

Deconstructing lupus—could some of its makeup be part of its cure?

February 20, 2018
Chandra Mohan, Hugh Roy and Lillie Cranz Cullen Endowed Professor of biomedical engineering, has received a $600,000 Target Identification in Lupus grant from the Lupus Research Alliance to address fundamental questions in ...

Recommended for you

Thymic tuft cells play key role in preventing autoimmunity, mouse experiments show

July 18, 2018
UC San Francisco researchers were recently surprised to discover fully formed gut and skin cells in the thymus, a lemon-sized organ that sits in front of the heart and is responsible for training the T cells of the immune ...

Autism risk determined by health of mom's gut, research reveals

July 18, 2018
The risk of developing autism-spectrum disorders is determined by the mother's microbiome—the collection of microorganisms that naturally live inside us—during pregnancy, new research from the University of Virginia School ...

New findings suggest allergic responses may protect against skin cancer

July 17, 2018
The components of the immune system that trigger allergic reactions may also help protect the skin against cancer, suggest new findings.

The immune system: T cells are built for speed

July 17, 2018
Without T cells, we could not survive. They are a key component of the immune system and have highly sensitive receptors on their surface that can detect pathogens. The exact way that these receptors are distributed over ...

Broadly acting antibodies found in plasma of Ebola survivors

July 17, 2018
Recent Ebola virus disease (EVD) outbreaks, including the 2013-2016 epidemic that ravaged West Africa and the 2018 outbreak in the Democratic Republic of the Congo, highlight the need for licensed treatments for this often-deadly ...

How protein fragments could help to tackle the cause of hay fever

July 16, 2018
Imperial researchers are looking to protein fragments to help people build up resistance to grass pollen.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.