Scientists identify a protein complex that shapes the destiny of T cells

July 6, 2018, St. Jude Children's Research Hospital
Corresponding author Hongbo Chi, Ph.D., and colleagues identified the mechanism that determines how T cells specialize during their development. Credit: St. Jude Children's Research Hospital

Like a mentor helping medical students choose between specialties, a protein complex helps shape the destiny of developing T cells, St. Jude Children's Research Hospital scientists have reported. The research appears today in the journal Science Immunology and adds to growing evidence of the critical role cell metabolism plays in the immune system.

The is mTORC1, which regulates cell growth and metabolism. St. Jude immunologists found mTORC1 acts in response to cues from in and around developing T cells and intersects with metabolic activity, to influence whether the cells become conventional or unconventional T cells. To their surprise, researchers found that disrupting mTORC1 led to metabolic changes that favored development of unconventional T cells at the expense of conventional T cells.

The research comes amid excitement about harnessing the immune system to fight cancer, tame autoimmune diseases and combat infectious diseases."We know that conventional and unconventional T cells are fundamentally different," said corresponding author Hongbo Chi, Ph.D., a member of the St. Jude Department of Immunology faculty. "They express different . The cells have different functions. But until now the mechanism that helps decide their fates has remained largely unknown."

T cells play a central role in the adaptive immune system, functioning like elite commando units trained to find and eliminate specific viruses and other threats. T cell development occurs in the thymus after immature (precursor) cells in the bone marrow travel there to mature and specialize. Their specialty is signaled partly by protein on the cell surface known as T (TCRs) or antigen receptors. T cells depend on the T cell receptors to recognize targets and respond to changing conditions.

In humans, the vast majority of T cell receptors have an alpha (α) protein chain and a beta (β) chain. These are conventional T cells that circulate widely and reside in the spleen and lymph nodes. A smaller number of T cells carry receptors made from a gamma (γ) and a delta (δ) protein chain. They belong to the family of unconventional T cells that are found in the gut, skin and other barrier tissues.

Working with mouse models and developing T cells in the laboratory, Chi and his colleagues showed that activation of mTORC1 revs up energy production through glycolysis and oxidation to fuel anabolic metabolism and promote development of αβ T cells.

When investigators disabled mTORC1, metabolism was disrupted, which was associated with a reduction in the αβ T cells and an increase in γδ T cells.Deleting a key component of mTORC1, a protein called RAPTOR, disabled mTORC1 and altered the metabolic balance in developing T cells. The change reduced anabolic metabolism but increased levels of toxic molecules called reactive oxygen species (ROS) and upregulated activity along a molecular pathway that promotes cell growth.

The change enhanced development of γδ T cells in the thymus and hindered development of αβ T cells.

Researchers also reported expression of signature genes associated with γδ T cells was enhanced in mice when RAPTOR was deleted from the mTORC1 complex.

"This research establishes mTORC1-driven metabolic signaling as a decisive factor in determining the fate of developing T cells and suggests metabolic processes are a fundamental mechanism that connects external signals with internal processes to guide the fate of immune ," Chi said.

Explore further: Disease-fighting antibody production

More information: K. Yang el al., "Metabolic signaling directs the reciprocal lineage decisions of αβ and γδ T cells," Science Immunology (2018). immunology.sciencemag.org/look … 6/sciimmunol.aas9818

Related Stories

Disease-fighting antibody production

April 20, 2018
The influence of environmental cues on the differentiation and function of B cells—white blood cells that produce antibodies as part of humoral immunity—is incompletely understood.

Maintaining immune balance involves an unconventional mechanism of T cell regulation

July 3, 2013
New findings from St. Jude Children's Research Hospital reveal an unconventional control mechanism involved in the production of specialized T cells that play a critical role in maintaining immune system balance. The research ...

Researchers discover how a protein complex revs up T cell activation to fight infections

December 16, 2013
St. Jude Children's Research Hospital scientists have identified a protein complex that is essential for jumpstarting the immune response during the critical first 24 hours of an infection. The research appears in the current ...

Allergies? Exhausted regulatory T cells may play a role

August 24, 2017
Researchers have evidence that the specialized T cells responsible for maintaining a balanced immune response are vulnerable to exhaustion that disrupts normal functioning and may even contribute to allergic reactions. St. ...

Dividing T cells: A potential target for improving cancer immunotherapy

July 1, 2016
When an immune T cell divides into two daughter cells, the activity of an enzyme called mTORC1, which controls protein production, splits unevenly between the progeny, producing two cells with different properties. Such "asymmetric ...

Recommended for you

Immunity connects gut bacteria and aging

November 13, 2018
Over the years, researchers have learned that the different populations of bacteria that inhabit the gut have significant effects on body functions, including the immune system. The populations of gut bacteria are sometimes ...

An enzyme in immune cells plays essential role in host defense against tuberculosis

November 13, 2018
Using freshly resected lung tissue from 21 patients and two distinct mouse models, tuberculosis researchers at the University of Alabama at Birmingham and the Africa Health Research Institute, or AHRI, have identified a protein ...

Probiotics increase bone volume in healthy mice

November 13, 2018
A widely-used probiotic stimulates bone formation in young female mice, according to a study published November 13th in the journal Immunity. In response to treatment with Lactobacillus rhamnosus GG (LGG), other intestinal ...

Study shows changes in histone methylation patterns in nutritionally stunted children

November 13, 2018
An international team of researchers has found changes in histone methylation patterns in nutritionally stunted children. In their paper published in Proceedings of the National Academy of Sciences, the group describes their ...

New clues to the origin and progression of multiple sclerosis

November 13, 2018
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The ...

Cognitive decline—radiation—brain tumor prevented by temporarily shutting down immune response

November 13, 2018
Treating brain tumors comes at a steep cost, especially for children. More than half of patients who endure radiation therapy for these tumors experience irreversible cognitive decline, a side-effect that has particularly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.