Synthetic surfactant could ease breathing for patients with lung disease and injury

July 9, 2018, Lawson Health Research Institute
Dr. Ruud Veldhuizen, scientist at Lawson Health Research Institute and co-investigator on the study. Credit: Lawson Health Research Institute

Human lungs are coated with a substance called surfactant which allows us to breathe easily. When lung surfactant is missing or depleted, which can happen with premature birth or lung injury, breathing becomes difficult. In a collaborative study between Lawson Health Research Institute and Stanford University, scientists have developed and tested a new synthetic surfactant that could lead to improved treatments for lung disease and injury.

Lung surfactant is made up of lipids and proteins which help lower tension on the 's surface, reducing the amount of effort needed to take a breath. The proteins, called surfactant-associated proteins, are very difficult to create in a laboratory and so the surfactant most commonly used in medicine is obtained from animal lungs.

London, Ontario has a rich legacy in surfactant research and innovation. Dr. Fred Possmayer, a scientist at Lawson and Western University, pioneered the technique used to purify and sterilize lung surfactant extracted from cows. Called bovine lipid extract surfactant (BLES), the therapeutic is made in London, Ontario and used by nearly all neonatal intensive care units in Canada to treat premature babies with respiratory distress.

"When we look at treating adults, surfactant therapy is more difficult. For example, their lungs are 20 times bigger than those of babies and so we need much higher doses of surfactant," explains Dr. Ruud Veldhuizen, a scientist at Lawson and an associate professor at Western University's Schulich School of Medicine & Dentistry. "We therefore need to find novel approaches to surfactant therapy for adult patients."

In this collaborative study, the research team took a new approach to creating synthetic surfactant. Rather than trying to recreate surfactant-associated proteins in the lab, scientists at Stanford created mimics. Pioneered by Dr. Annelise Barron, associate professor at Stanford, these protein mimics look like surfactant-associated proteins and have similar properties but are easier to create and more stable. As a result, the team was able to create a new synthetic surfactant.

Collaborating with the Stanford team, Dr. Veldhuizen evaluated the synthetic surfactant in animal models in his research lab at St. Joseph's Health Care London. The study showed that, unlike other synthetic surfactants currently on the market, the new surfactant equaled or outperformed the animal-derived surfactant in every outcome. This included outperforming animal-derived surfactant in oxygenating blood, which is the lungs' main purpose.

"The unique ability of the Veldhuizen lab to perform these rigorous and sophisticated studies was a critical aspect of the success of this project," says Dr. Barron.

"These are very promising results," says Dr. Veldhuizen. "For the first time, a synthetic surfactant has been developed which appears to be just as effective, if not more so, as that taken from the lungs of animals."

The team estimates that the synthetic surfactant could be produced at as low as one quarter of the cost of the animal-derived surfactant. With a lower cost the synthetic surfactant could be tested with more lung diseases and injuries in adults and made available in more developing countries.

The team hopes to continue their research with further testing of the synthetic surfactant, including its long term effects. The team also hopes to test its ability to be customized for specific diseases. "Since it is made in the lab, we could combine the surfactant with other drugs like antibacterial agents and deliver it to specific areas of the lung, such as those where an infection is located," explains Dr. Veldhuizen.

One disease the scientists would like to further study is acute respiratory distress syndrome (ARDS). ARDS is characterized by a low amount of oxygen in the blood due to difficulty breathing. While current surfactants have been tested with ARDS patients, they have not been effective. Dr. Veldhuizen wants to combine this new synthetic surfactant with anti-inflammatory agents and antibacterial agents to test whether patient outcomes are improved.

The study, "Effective in vivo treatment of acute with helical, amphipathic peptoid mimics of pulmonary proteins," is published in Scientific Reports.

Explore further: Scientist develops protein mimic to help injured lungs breathe

More information: Ann M. Czyzewski et al, Effective in vivo treatment of acute lung injury with helical, amphipathic peptoid mimics of pulmonary surfactant proteins, Scientific Reports (2018). DOI: 10.1038/s41598-018-25009-3

Related Stories

Scientist develops protein mimic to help injured lungs breathe

April 30, 2018
The material could be used to synthesize a film that coats the inner surface of lungs, possibly leading to better, cheaper treatments for acute lung injury in humans.

Vaping less harmful to lung fluids than smoking, study shows

January 26, 2018
A new Ohio University engineering study shows that e-cigarettes, while still toxic, are less harmful than conventional cigarettes.

Scripps Research discoveries lead to newly approved drug for infant respiratory distress syndrome

March 7, 2012
Scientific advances at The Scripps Research Institute have led to a new drug Surfaxin (lucinactant), approved today by the U.S. Food and Drug Administration (FDA) to treat infant respiratory distress syndrome.

Late surfactant does not cut duration of ventilation in BPD

March 1, 2016
(HealthDay)—Late administration of surfactant does not reduce the duration of ventilation in very preterm neonates with prolonged respiratory distress, according to research published online Feb. 29 in JAMA Pediatrics.

Gene therapy to correct surfactant protein B deficiency in newborns

July 26, 2017
An article published in Experimental Biology and Medicine (Volume 242, Issue 13, July, 2017) reports that gene therapy may be used to as an intermediate therapy for newborns with surfactant protein deficiencies until lung ...

Recommended for you

Gut hormone and brown fat interact to tell the brain it's time to stop eating

November 15, 2018
Researchers from Germany and Finland have shown that so-called "brown fat" interacts with the gut hormone secretin in mice to relay nutritional signals about fullness to the brain during a meal. The study, appearing November ...

Brain, muscle cells found lurking in kidney organoids grown in lab

November 15, 2018
Scientists hoping to develop better treatments for kidney disease have turned their attention to growing clusters of kidney cells in the lab. One day, so-called organoids—grown from human stem cells—may help repair damaged ...

How the Tasmanian devil inspired researchers to create 'safe cell' therapies

November 15, 2018
A contagious facial cancer that has ravaged Tasmanian devils in southern Australia isn't the first place one would look to find the key to advancing cell therapies in humans.

Researchers discover important connection between cells in the liver

November 15, 2018
University of Minnesota Medical School researchers have made a discovery which could lead to a new way of thinking about how disease pathogenesis in the liver is regulated, which is important for understanding the condition ...

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

Gene mutation found to cause macrocephaly and intellectual deficits

November 13, 2018
The absence of one copy of a single gene in the brain causes a rare, as-yet-unnamed neurological disorder, according to new research that builds on decades of work by a University at Buffalo biochemist and his colleagues.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.